On the damped oscillations of an elastic quasi-circular membrane in a two-dimensional incompressible fluid

Abstract We propose a procedure – partly analytical and partly numerical – to find the frequency and the damping rate of the small-amplitude oscillations of a massless elastic capsule immersed in a two-dimensional viscous incompressible fluid. The unsteady Stokes equations for the stream function are decomposed into normal modes for the angular and temporal variables, leading to a fourth-order linear ordinary differential equation in the radial variable. The forcing terms are dictated by the properties of the membrane and result in jump conditions at the interface between the internal and external media. The equation can be solved numerically, and excellent agreement is found with a fully computational approach that we have developed in parallel. Comparisons are also shown with results available in the scientific literature for drops, and a model based on the concept of entrained fluid is presented, which allows for a good representation of the present results and a consistent interpretation of the underlying physics.

[1]  Alexander Farutin,et al.  Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[3]  Hong Zhao,et al.  The dynamics of a vesicle in simple shear flow , 2011, Journal of Fluid Mechanics.

[4]  Mary Catherine A. Kropinski,et al.  Efficient numerical methods for multiple surfactant-coated bubbles in a two-dimensional stokes flow , 2011, J. Comput. Phys..

[5]  Andrea Mazzino,et al.  Spontaneous symmetry breaking of a hinged flapping filament generates lift. , 2012, Physical review letters.

[6]  C. Pozrikidis,et al.  Computational hydrodynamics of capsules and biological cells , 2010 .

[7]  David Salac,et al.  A level set projection model of lipid vesicles in general flows , 2011, J. Comput. Phys..

[8]  Zhilin Li,et al.  An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane , 2008, J. Comput. Phys..

[9]  Leslie Greengard,et al.  Integral Equation Methods for Unsteady Stokes Flow in Two Dimensions , 2012, SIAM J. Sci. Comput..

[10]  Thierry Biben,et al.  Rheology of a dilute two-dimensional suspension of vesicles , 2010, Journal of Fluid Mechanics.

[11]  Pingwen Zhang,et al.  Numerical simulation of fluid membranes in two-dimensional space , 2008 .

[12]  Leslie Greengard,et al.  An Integral Equation Approach to the Incompressible Navier-Stokes Equations in Two Dimensions , 1998, SIAM J. Sci. Comput..

[13]  M. Jaeger,et al.  Settling of a vesicle in the limit of quasispherical shapes , 2011, Journal of Fluid Mechanics.

[14]  Michael J. Miksis,et al.  Reynolds number effects on lipid vesicles , 2012, Journal of Fluid Mechanics.

[15]  Hugh C. Woolfenden,et al.  Motion of a two-dimensional elastic capsule in a branching channel flow , 2011, Journal of Fluid Mechanics.

[16]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[17]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[18]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[19]  R. Apfel,et al.  Shape oscillations of drops in the presence of surfactants , 1991, Journal of Fluid Mechanics.

[20]  Boo Cheong Khoo,et al.  An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries , 2006, J. Comput. Phys..

[21]  Dominique Barthès-Biesel,et al.  Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes , 2011, Journal of Fluid Mechanics.

[22]  Charles S. Peskin,et al.  Stability and Instability in the Computation of Flows with Moving Immersed Boundaries: A Comparison of Three Methods , 1992, SIAM J. Sci. Comput..

[23]  Axel Voigt,et al.  Dynamics of multicomponent vesicles in a viscous fluid , 2010, J. Comput. Phys..

[24]  S B Rochal,et al.  Viscoelastic dynamics of spherical composite vesicles. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Ming-Chih Lai,et al.  Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method , 2010, J. Comput. Phys..

[26]  G. Breyiannis,et al.  Simple Shear Flow of Suspensions of Elastic Capsules , 2000 .

[27]  Franck Nicoud,et al.  An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers , 2014, J. Comput. Phys..

[28]  L. E. Scriven,et al.  The oscillations of a fluid droplet immersed in another fluid , 1968, Journal of Fluid Mechanics.

[29]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[30]  Andrea Prosperetti,et al.  Boundary Integral Methods , 2002 .

[31]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[32]  D. Joseph,et al.  Purely irrotational theories for the viscous effects on the oscillations of drops and bubbles , 2008 .

[33]  Katharine H Fraser,et al.  The use of computational fluid dynamics in the development of ventricular assist devices. , 2011, Medical engineering & physics.

[34]  F. Nicoud,et al.  Acoustic modes in combustors with complex impedances and multidimensional active flames , 2007 .

[35]  W. H. Reid The oscillations of a viscous liquid drop , 1960 .

[36]  Dominique Barthès-Biesel,et al.  Hydrodynamic interaction between two identical capsules in simple shear flow , 2007, Journal of Fluid Mechanics.

[37]  Vincent Moureau,et al.  From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling , 2011 .

[38]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[39]  A. Salsac,et al.  Flow of a spherical capsule in a pore with circular or square cross-section , 2011, Journal of Fluid Mechanics.

[40]  L. Rayleigh,et al.  The theory of sound , 1894 .

[41]  J. Vejražka,et al.  Shape oscillations of an oil drop rising in water: effect of surface contamination , 2012, Journal of Fluid Mechanics.

[42]  C. Pozrikidis,et al.  Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow , 1995, Journal of Fluid Mechanics.

[43]  Bryan D. Quaife,et al.  Second kind integral equation formulation for the modified biharmonic equation and its applications , 2013, J. Comput. Phys..

[44]  Robert J. Asaro,et al.  Multiscale modelling of erythrocytes in Stokes flow , 2011, Journal of Fluid Mechanics.

[45]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[46]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[47]  A. Prosperetti Free oscillations of drops and bubbles: the initial-value problem , 1980 .

[48]  Vincent Moureau,et al.  Design of a massively parallel CFD code for complex geometries , 2011 .

[49]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[50]  Jun Zhang,et al.  Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind , 2000, Nature.

[51]  William Thomson,et al.  Mathematical and physical papers , 1880 .

[52]  Alireza Yazdani,et al.  Influence of membrane viscosity on capsule dynamics in shear flow , 2013, Journal of Fluid Mechanics.

[53]  Prem K. Kythe,et al.  Integral Equation Methods , 1998 .