Measuring multipartite entanglement through dynamic susceptibilities

Entanglement plays a central role in our understanding of quantum many body physics, and is fundamental in characterising quantum phases and quantum phase transitions. Developing protocols to detect and quantify entanglement of many-particle quantum states is thus a key challenge for present experiments. Here, we show that the quantum Fisher information, representing a witness for genuinely multipartite entanglement, becomes measurable for thermal ensembles via the dynamic susceptibility, i.e., with resources readily available in present cold atomic gas and condensed-matter experiments. This moreover establishes a fundamental connection between multipartite entanglement and many-body correlations contained in response functions, with profound implications close to quantum phase transitions. There, the quantum Fisher information becomes universal, allowing us to identify strongly entangled phase transitions with a divergent multipartiteness of entanglement. We illustrate our framework using paradigmatic quantum Ising models, and point out potential signatures in optical-lattice experiments.

[1]  Bangalore,et al.  Infinite-range Ising ferromagnet in a time-dependent transverse magnetic field: Quench and ac dynamics near the quantum critical point , 2006 .

[2]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[3]  Zhijun Xu,et al.  Absolute cross-section normalization of magnetic neutron scattering data. , 2013, The Review of scientific instruments.

[4]  Vlatko Vedral,et al.  Crucial role of quantum entanglement in bulk properties of solids (4 pages) , 2004, quant-ph/0410138.

[5]  Wan-Fang Liu,et al.  Quantum Fisher information and spin squeezing in the ground state of the XY model , 2013 .

[6]  Augusto Smerzi,et al.  Quantum theory of phase estimation , 2014, 1411.5164.

[7]  T. Perring,et al.  Confinement of Fractional Quantum Number Particles in a Condensed-matter System , 2009, 0908.1038.

[8]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[9]  Lei Wang,et al.  Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach , 2015, 1502.06969.

[10]  Julien Vidal,et al.  Finite-size scaling exponents of the Lipkin-Meshkov-Glick model. , 2004, Physical review letters.

[11]  Michael Wimmer,et al.  Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices , 2011, TOMS.

[12]  Xun-Wei Xu,et al.  Renormalized quantum Fisher information manifestation of Berezinskii-Kosterlitz-Thouless phase transition for spin-1/2 XXZ chain , 2014, 1405.1123.

[13]  T. V'ertesi,et al.  Thermal entanglement in the nanotubular system Na 2 V 3 O 7 , 2006 .

[14]  Geza Toth Entanglement witnesses in spin models , 2005 .

[15]  M. Lewenstein,et al.  Can one trust quantum simulators? , 2011, Reports on progress in physics. Physical Society.

[16]  B. M. Fulk MATH , 1992 .

[17]  H. Eisaki,et al.  Quantum critical behaviour in a high-Tc superconductor , 2003, Nature.

[18]  K. Pyka,et al.  Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy , 2010 .

[19]  Z. Nussinov,et al.  Powerlaw optical conductivity with a constant phase angle in high Tc superconductors , 2003, cond-mat/0309172.

[20]  Jian Ma,et al.  Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model , 2009, 0905.0245.

[21]  X. R. Wang,et al.  Relating Fisher information to order parameters. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[23]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[24]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[25]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[26]  G. Shirane,et al.  Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques , 2002 .

[27]  Paolo Zanardi,et al.  Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.

[28]  M. Halg,et al.  Finite-temperature scaling of spin correlations in a partially magnetized Heisenberg S =1/2 chain , 2015, 1507.06487.

[29]  F. Nori,et al.  Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.

[30]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[31]  Michael Wimmer,et al.  Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices , 2011, ArXiv.

[32]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[33]  P. Zoller,et al.  Measuring entanglement growth in quench dynamics of bosons in an optical lattice. , 2012, Physical review letters.

[34]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[35]  K. Kiefer,et al.  Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry , 2010, Science.

[36]  Paolo Zanardi,et al.  Quantum critical scaling of the geometric tensors. , 2007, Physical review letters.

[37]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[38]  G. Shirane,et al.  Neutron Scattering with a Triple-Axis Spectrometer , 2002 .

[39]  H. Rønnow,et al.  Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain , 2013, Nature Physics.

[40]  Immanuel Bloch,et al.  Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain. , 2015, Physical review letters.

[41]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[42]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[43]  W. Marsden I and J , 2012 .

[44]  A. R. Mackintosh,et al.  Rare Earth Magnetism: Structures and Excitations , 1991 .

[45]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[46]  M B Plenio,et al.  Spatial entanglement of bosons in optical lattices , 2013, Nature Communications.

[47]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[48]  M. Halg,et al.  Finite-temperature scaling of spin correlations in an experimental realization of the one-dimensional Ising quantum critical point , 2015, 1504.04590.

[49]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[50]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[51]  M. Rispoli,et al.  Measuring entanglement entropy through the interference of quantum many-body twins , 2015, 1509.01160.

[52]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[53]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[54]  S. Raymond,et al.  Anomalous scaling behavior of the dynamical spin susceptibility of Ce 0.925 La 0.075 Ru 2 Si 2 , 2004, cond-mat/0404124.

[55]  Shi-Jian Gu,et al.  Fidelity, dynamic structure factor, and susceptibility in critical phenomena. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[57]  David A. Huse,et al.  Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms , 2014, Nature.

[58]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[59]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[60]  Gilda Frantz,et al.  Fidelity , 1864, Hall's journal of health.

[61]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[62]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[63]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[64]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[65]  Xun-Wei Xu,et al.  Probing Berezinskii–Kosterlitz–Thouless Phase Transition of Spin-Half XXZ Chain by Quantum Fisher Information , 2015 .

[66]  G. Aeppli,et al.  Entangled quantum state of magnetic dipoles , 2003, Nature.