Robust a posteriori error estimates for conforming and nonconforming finite element methods for convection-diffusion problems

A posteriori error estimation is carried out within a unified framework for various conforming and nonconforming finite element methods for convection-diffusion problems. Our main contribution is finding an appropriate norm to measure the error, which incorporates a discrete energy norm, a discrete dual semi-norm of the convective derivative and jumps of the approximate solution over element faces (edges in two dimensions). The error estimator is shown to be robust with respect to the Peclet number in the sense of the modified norm. Based on a general error decomposition, we show that the key ingredient of error estimation is the estimation on the consistency error related to the particular numerical scheme, and the remaining terms can be bounded in a unified way. The numerical results are presented to illustrate the robustness and practical performance of the estimator in an adaptive refinement strategy.

[1]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[2]  Mark Ainsworth,et al.  Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions , 2013 .

[3]  D. Schötzau,et al.  A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations , 2011 .

[4]  Martin Eigel,et al.  Functional A Posteriori Error Estimation for Stationary Reaction-Convection-Diffusion Problems , 2014, Comput. Methods Appl. Math..

[5]  Martin Vohralík,et al.  Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.

[6]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[7]  Gunar Matthies,et al.  The Streamline–Diffusion Method for Conforming and Nonconforming Finite Elements of Lowest Order Applied to Convection–Diffusion Problems , 2001, Computing.

[8]  L. Tobiska,et al.  Robust A Posteriori Error Estimates for Stabilized Finite Element Methods , 2014, 1402.5892.

[9]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..

[10]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[11]  J. Maubach,et al.  Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems , 1997 .

[12]  Volker John,et al.  A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations , 2013 .

[13]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[14]  Dominik Schötzau,et al.  A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .

[15]  Stephansen,et al.  A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods , 2007 .

[16]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[17]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear monotone operators , 2001 .

[18]  Jikun Zhao,et al.  A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems , 2015 .

[19]  Weifeng Qiu,et al.  Robust a posteriori error estimates for HDG method for convection–diffusion equations , 2014, 1406.2163.

[20]  Giancarlo Sangalli A Uniform Analysis of Nonsymmetric and Coercive Linear Operators , 2005, SIAM J. Math. Anal..

[21]  Xiaoping Xie,et al.  On residual-based a posteriori error estimators for lowest-order Raviart-Thomas element approximation to convection-diffusion-reaction equations , 2013, 1312.6455.

[22]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[23]  Alexandre Ern,et al.  A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations , 2007 .

[24]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[25]  Jikun Zhao,et al.  On a posteriori error estimates for the linear triangular finite element , 2014 .

[26]  Gunar Matthies,et al.  A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems , 1998 .

[27]  Linda El Alaoui,et al.  Nonconforming finite element methods with subgrid viscosity applied to advection‐diffusion‐reaction equations , 2006 .

[28]  Uwe Risch,et al.  Superconvergence of a nonconforming low order finite element , 2005 .

[29]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[30]  Abdellatif Agouzal,et al.  Robust hierarchical a posteriori error estimators for stabilized convection–diffusion problems , 2012 .

[31]  Shaohong Du,et al.  A new residual posteriori error estimates of mixed finite element methods for convection‐diffusion‐reaction equations , 2014 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[34]  Lutz Tobiska,et al.  The streamline–diffusion method for nonconforming Qrot1 elements on rectangular tensor–product meshes , 2001 .

[35]  Serge Nicaise,et al.  A posteriori error estimator based on gradient recovery by averaging for convection–diffusion–reaction problems approximated by discontinuous Galerkin methods , 2010, 1011.0973.

[36]  Petr Knobloch,et al.  The P1mod Element: A New Nonconforming Finite Element for Convection-Diffusion Problems , 2003, SIAM J. Numer. Anal..

[37]  Yves Achdou,et al.  A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.