Graviton fluctuations erase the cosmological constant

Abstract Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological “constant” in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

[1]  Lorenz von Smekal,et al.  Real-time correlation functions in the $$O(N)$$O(N) model from the functional renormalization group , 2013, 1302.6199.

[2]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[3]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[4]  C. Wetterich,et al.  Scale dependence of the average potential around the maximum in φ4 theories , 1992 .

[5]  GAUGE HIERARCHY DUE TO STRONG INTERACTIONS , 1981 .

[6]  Roberto Percacci,et al.  Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.

[7]  C. Wetterich Quantum correlations for the metric , 2016, 1603.06504.

[8]  C. Wetterich,et al.  Average action for the N-component ϕ4 theory , 1990 .

[9]  C. Wetterich Cosmic fluctuations from a quantum effective action , 2015, 1503.07860.

[10]  C. Wetterich Gauge-invariant flow equation , 2016, Nuclear Physics B.

[11]  J. M. Pawlowski,et al.  Towards apparent convergence in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[12]  Jan M. Pawlowski,et al.  Real time correlation functions and the functional renormalization group , 2015, 1508.01160.

[13]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[14]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[15]  Carlo Pagani,et al.  Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.

[16]  C. Wetterich Variable gravity Universe , 2013, 1308.1019.

[17]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[18]  C. Wetterich,et al.  Gauge hierarchy problem in asymptotically safe gravity — The resurgence mechanism , 2016, 1612.03069.

[19]  C. Wetterich,et al.  Primordial cosmic fluctuations for variable gravity , 2015, 1511.03530.

[20]  M.Reuter Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.

[21]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[22]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[23]  C. Wetterich Gauge symmetry from decoupling , 2017 .

[24]  Jan M. Pawlowski,et al.  Local Quantum Gravity , 2015, 1506.07016.

[25]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[26]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[27]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[28]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[29]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[30]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[31]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[32]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[33]  A. Bonanno,et al.  Asymptotically safe cosmology – A status report , 2017, 1702.04137.

[34]  Jan M. Pawlowski,et al.  Global Flows in Quantum Gravity , 2014, 1403.1232.

[35]  M. Reuter,et al.  From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.

[36]  Jan Martin Pawlowski,et al.  Dilaton quantum gravity , 2013, 1304.7743.

[37]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[38]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[39]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[40]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[41]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[42]  Peter Labus,et al.  Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.

[43]  Stefan Floerchinger,et al.  Analytic continuation of functional renormalization group equations , 2011, 1112.4374.

[44]  Holger Gies,et al.  Generalized parametrization dependence in quantum gravity , 2015, 1507.08859.

[45]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[46]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[47]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[48]  Jan Martin Pawlowski,et al.  Scaling solutions for dilaton quantum gravity , 2016, 1605.01858.

[49]  S. Nagy,et al.  Critical exponents in quantum Einstein gravity , 2013, 1307.0765.

[50]  C. Wetterich,et al.  Inflation, quintessence, and the origin of mass , 2014, 1408.0156.

[51]  C. Wetterich,et al.  Emergent scale symmetry: Connecting inflation and dark energy , 2017, 1705.00552.

[52]  Kevin Falls,et al.  Asymptotic safety and the cosmological constant , 2014, 1408.0276.

[53]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[54]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[55]  N. Strodthoff Self-consistent spectral functions in the O ( N ) model from the functional renormalization group , 2017 .