Graviton fluctuations erase the cosmological constant
暂无分享,去创建一个
[1] Lorenz von Smekal,et al. Real-time correlation functions in the $$O(N)$$O(N) model from the functional renormalization group , 2013, 1302.6199.
[2] P. Peebles,et al. Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.
[3] Jan M. Pawlowski,et al. Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.
[4] C. Wetterich,et al. Scale dependence of the average potential around the maximum in φ4 theories , 1992 .
[5] GAUGE HIERARCHY DUE TO STRONG INTERACTIONS , 1981 .
[6] Roberto Percacci,et al. Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.
[7] C. Wetterich. Quantum correlations for the metric , 2016, 1603.06504.
[8] C. Wetterich,et al. Average action for the N-component ϕ4 theory , 1990 .
[9] C. Wetterich. Cosmic fluctuations from a quantum effective action , 2015, 1503.07860.
[10] C. Wetterich. Gauge-invariant flow equation , 2016, Nuclear Physics B.
[11] J. M. Pawlowski,et al. Towards apparent convergence in asymptotically safe quantum gravity , 2016, The European Physical Journal C.
[12] Jan M. Pawlowski,et al. Real time correlation functions and the functional renormalization group , 2015, 1508.01160.
[13] R. Percacci,et al. Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.
[14] M. Reuter,et al. Quantum gravity at astrophysical distances , 2004 .
[15] Carlo Pagani,et al. Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.
[16] C. Wetterich. Variable gravity Universe , 2013, 1308.1019.
[17] Frank Saueressig,et al. Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.
[18] C. Wetterich,et al. Gauge hierarchy problem in asymptotically safe gravity — The resurgence mechanism , 2016, 1612.03069.
[19] C. Wetterich,et al. Primordial cosmic fluctuations for variable gravity , 2015, 1511.03530.
[20] M.Reuter. Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.
[21] Martin Reuter,et al. Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.
[22] Martin Reuter,et al. Effective average action for gauge theories and exact evolution equations , 1994 .
[23] C. Wetterich. Gauge symmetry from decoupling , 2017 .
[24] Jan M. Pawlowski,et al. Local Quantum Gravity , 2015, 1506.07016.
[25] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[26] Martin Reuter,et al. Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.
[27] Steven Weinberg,et al. The Cosmological Constant Problem , 1989 .
[28] D. Litim. Optimized renormalization group flows , 2001, hep-th/0103195.
[29] Mikhail Shaposhnikov,et al. Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.
[30] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. , 1980 .
[31] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[32] Frank Saueressig,et al. Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.
[33] A. Bonanno,et al. Asymptotically safe cosmology – A status report , 2017, 1702.04137.
[34] Jan M. Pawlowski,et al. Global Flows in Quantum Gravity , 2014, 1403.1232.
[35] M. Reuter,et al. From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.
[36] Jan Martin Pawlowski,et al. Dilaton quantum gravity , 2013, 1304.7743.
[37] M. Yamada,et al. Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.
[38] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[39] Jan M. Pawlowski,et al. Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.
[40] Christoph Rahmede,et al. Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.
[41] C. Wetterich. COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.
[42] Peter Labus,et al. Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.
[43] Stefan Floerchinger,et al. Analytic continuation of functional renormalization group equations , 2011, 1112.4374.
[44] Holger Gies,et al. Generalized parametrization dependence in quantum gravity , 2015, 1507.08859.
[45] Wataru Souma,et al. Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.
[46] Frank Saueressig,et al. Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.
[47] Roberto Percacci,et al. The running gravitational couplings , 1998 .
[48] Jan Martin Pawlowski,et al. Scaling solutions for dilaton quantum gravity , 2016, 1605.01858.
[49] S. Nagy,et al. Critical exponents in quantum Einstein gravity , 2013, 1307.0765.
[50] C. Wetterich,et al. Inflation, quintessence, and the origin of mass , 2014, 1408.0156.
[51] C. Wetterich,et al. Emergent scale symmetry: Connecting inflation and dark energy , 2017, 1705.00552.
[52] Kevin Falls,et al. Asymptotic safety and the cosmological constant , 2014, 1408.0276.
[53] D. Litim. Fixed points of quantum gravity , 2003, hep-th/0312114.
[54] R. Percacci,et al. Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.
[55] N. Strodthoff. Self-consistent spectral functions in the O ( N ) model from the functional renormalization group , 2017 .