A fast particle-based approach for calibrating a 3-D model of the Antarctic ice sheet

We consider the scientifically challenging and policy-relevant task of understanding the past and projecting the future dynamics of the Antarctic ice sheet. The Antarctic ice sheet has shown a highly nonlinear threshold response to past climate forcings. Triggering such a threshold response through anthropogenic greenhouse gas emissions would drive drastic and potentially fast sea level rise with important implications for coastal flood risks. Previous studies have combined information from ice sheet models and observations to calibrate model parameters. These studies have broken important new ground but have either adopted simple ice sheet models or have limited the number of parameters to allow for the use of more complex models. These limitations are largely due to the computational challenges posed by calibration as models become more computationally intensive or when the number of parameters increases. Here we propose a method to alleviate this problem: a fast sequential Monte Carlo method that takes advantage of the massive parallelization afforded by modern high performance computing systems. We use simulated examples to demonstrate how our sample-based approach provides accurate approximations to the posterior distributions of the calibrated parameters. The drastic reduction in computational times enables us to provide new insights into important scientific questions, for example, the impact of Pliocene era data and prior parameter information on sea level projections. These studies would be computationally prohibitive with other computational approaches for calibration such as Markov chain Monte Carlo or emulation-based methods. We also find considerable differences in the distributions of sea level projections when we account for a larger number of uncertain parameters.

[1]  Antony J. Payne,et al.  An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1) , 2010 .

[2]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[3]  Thi Le Thu Nguyen,et al.  Sequential Monte-Carlo sampler for Bayesian inference in complex systems , 2014 .

[4]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[5]  Jordan R. Fischbach,et al.  Estimating Surge-Based Flood Risk with the Coastal Louisiana Risk Assessment Model , 2013 .

[6]  Klaus Keller,et al.  An assessment of key model parametric uncertainties in projections of Greenland ice sheet behavior , 2012 .

[7]  Karin S. Dorman,et al.  mlegp: statistical analysis for computer models of biological systems using R , 2008, Bioinform..

[8]  Nicolas Chopin,et al.  Sequential Monte Carlo on large binary sampling spaces , 2011, Statistics and Computing.

[9]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[10]  J. Kiehl,et al.  Atmospheric river landfall‐latitude changes in future climate simulations , 2016 .

[11]  A. Vieli,et al.  A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics , 2010, Journal of Glaciology.

[12]  O. Papaspiliopoulos,et al.  Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.

[13]  Jenný Brynjarsdóttir,et al.  Learning about physical parameters: the importance of model discrepancy , 2014 .

[14]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[15]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[16]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[17]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[18]  Murali Haran,et al.  Computer Model Calibration with Multivariate Spatial Output : A Case Study , 2010 .

[19]  Raquel V. Francisco,et al.  Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET , 2007 .

[20]  A. Payne,et al.  The Glimmer community ice sheet model , 2009 .

[21]  M. Haran,et al.  Fast dimension-reduced climate model calibration and the effect of data aggregation , 2013, 1303.1382.

[22]  Alexandros Beskos,et al.  Particle Filtering for Stochastic Navier-Stokes Signal Observed with Linear Additive Noise , 2017, SIAM J. Sci. Comput..

[23]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[24]  R. S. W. van de Wal,et al.  A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications , 2014 .

[25]  Jorge Bernales,et al.  High climate model dependency of Pliocene Antarctic ice-sheet predictions , 2018, Nature Communications.

[26]  Matthias Morzfeld,et al.  Parameter estimation by implicit sampling , 2013, 1308.4640.

[27]  Klaus Keller,et al.  A simple, physically motivated model of sea-level contributions from the Greenland ice sheet in response to temperature changes , 2016, Environ. Model. Softw..

[28]  G. Shaffer,et al.  Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature , 2014 .

[29]  Georg Stadler,et al.  Solution of Nonlinear Stokes Equations Discretized By High-Order Finite Elements on Nonconforming and Anisotropic Meshes, with Application to Ice Sheet Dynamics , 2014, SIAM J. Sci. Comput..

[30]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[31]  Steven J. Pickering,et al.  Sensitivity of Pliocene Ice Sheets to Orbital Forcing , 2011 .

[32]  Elizabeth D. Keller,et al.  Global environmental consequences of twenty-first-century ice-sheet melt , 2019, Nature.

[33]  Arnaud Doucet,et al.  Convergence of Sequential Monte Carlo Methods , 2007 .

[34]  A. Gettelman,et al.  The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam but a Tool for Model Evaluation and Development , 2019, Journal of Advances in Modeling Earth Systems.

[35]  James O. Berger,et al.  Modularization in Bayesian analysis, with emphasis on analysis of computer models , 2009 .

[36]  G. Kuhn,et al.  Obliquity-paced Pliocene West Antarctic ice sheet oscillations , 2009, Nature.

[37]  Costas Papadimitriou,et al.  Sequential importance sampling for structural reliability analysis , 2016 .

[38]  Andreas Schmittner,et al.  Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM , 2010 .

[39]  Luca Martino,et al.  A review of multiple try MCMC algorithms for signal processing , 2017, Digit. Signal Process..

[40]  Nathan M. Urban,et al.  A comparison of Latin hypercube and grid ensemble designs for the multivariate emulation of an Earth system model , 2010, Comput. Geosci..

[41]  J. Kutzbach,et al.  Material for Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming , 2009 .

[42]  Alexandros Beskos,et al.  On the convergence of adaptive sequential Monte Carlo methods , 2013, The Annals of Applied Probability.

[43]  D. Pollard,et al.  Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data , 2015, 1501.01937.

[44]  N. Chopin A sequential particle filter method for static models , 2002 .

[45]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[46]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[47]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[48]  Xin Li,et al.  A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters , 2018 .

[49]  Klaus Keller,et al.  Using direct policy search to identify robust strategies in adapting to uncertain sea-level rise and storm surge , 2017, Environ. Model. Softw..

[50]  Jérémy Rohmer,et al.  Bounding probabilistic sea-level projections within the framework of the possibility theory , 2017 .

[51]  Arnaud Doucet,et al.  Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .

[52]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[53]  Ashish Sharma,et al.  Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers , 2011 .

[54]  Georg Stadler,et al.  Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..

[55]  Anthony Lee,et al.  On the role of interaction in sequential Monte Carlo algorithms , 2013, 1309.2918.

[56]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[57]  Tiffani L. Williams,et al.  Sea surface temperature control on the distribution of far‐traveled Southern Ocean ice‐rafted detritus during the Pliocene , 2014 .

[58]  Yan Zhou,et al.  Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2016 .

[59]  Dan Cornford,et al.  Dimensionality Reduction in the Emulator Setting , 2007 .

[60]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..

[61]  Philip B. Holden,et al.  Revisiting Antarctic ice loss due to marine ice-cliff instability , 2018, Nature.

[62]  Maureen E. Raymo,et al.  The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography , 2014 .

[63]  Daniel W. Apley,et al.  Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.

[64]  Michael Goldstein,et al.  History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble , 2013, Climate Dynamics.

[65]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[66]  Juan M. Corchado,et al.  Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches , 2013, Expert Syst. Appl..

[67]  Mark Jit,et al.  Calibration of Complex Models through Bayesian Evidence Synthesis , 2015, Medical decision making : an international journal of the Society for Medical Decision Making.

[68]  David Pollard,et al.  A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica , 2012 .

[69]  Michael Obersteiner,et al.  Learning and climate change , 2006 .

[70]  I. C. Rutt,et al.  Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change , 2010 .

[71]  David McInerney,et al.  The dynamics of learning about a climate threshold , 2008 .

[72]  Richard B. Alley,et al.  Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure , 2015 .

[73]  Roel Neggers,et al.  Can We Use Single‐Column Models for Understanding the Boundary Layer Cloud‐Climate Feedback? , 2017 .

[74]  Klaus Keller,et al.  Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense , 2016, Climatic Change.

[75]  Harry J. Dowsett,et al.  High eustatic sea level during the middle Pliocene:Evidence from the southeastern U.S. Atlantic Coastal Plain , 1990 .

[76]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[77]  Klaus Keller,et al.  Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses , 2017, PloS one.

[78]  Dennis K. J. Lin,et al.  A construction method for orthogonal Latin hypercube designs , 2006 .

[79]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[80]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[81]  Robert B. Dunbar,et al.  Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth , 2013 .

[82]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[83]  M. Collins Ensembles and probabilities: a new era in the prediction of climate change , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[85]  Klaus Keller,et al.  A Potential Disintegration of the West Antarctic Ice Sheet: Implications for Economic Analyses of Climate Policy , 2016 .

[86]  Bruno Hamelin,et al.  Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago , 2012, Nature.

[87]  J. Edmonds,et al.  The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation , 2006 .

[88]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[89]  Michael Ghil,et al.  Disconcerting learning on climate sensitivity and the uncertain future of uncertainty , 2013, Climatic Change.

[90]  Hylke de Vries,et al.  A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss , 2017 .

[91]  Mathieu Morlighem,et al.  Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework , 2018, The Cryosphere.

[92]  S. Jacobs,et al.  Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf , 2011 .

[93]  Alexandros Beskos,et al.  Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[94]  Klaus Keller,et al.  Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration , 2016, PloS one.

[95]  Yinghui Wu,et al.  Parallelizing Sequential Graph Computations , 2018, ACM Trans. Database Syst..

[96]  Richard B. Alley,et al.  How high will the seas rise? , 2016, Science.

[97]  Anthony Lee,et al.  Parallel Resampling in the Particle Filter , 2013, 1301.4019.

[98]  Serge Guillas,et al.  Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights , 2016, SIAM/ASA J. Uncertain. Quantification.

[99]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[100]  Murali Haran,et al.  Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques , 2015 .

[101]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[102]  Jonathan J. Hu,et al.  Reducing Communication Costs for Sparse Matrix Multiplication within Algebraic Multigrid , 2015, SIAM J. Sci. Comput..

[103]  Stuart Edwards,et al.  Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland , 2015, Journal of geophysical research. Earth surface.

[104]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[105]  Eric Rignot,et al.  Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) , 2012 .

[106]  David Pollard,et al.  Variations of the Antarctic Ice Sheet in a Coupled Ice Sheet‐Earth‐Sea Level Model: Sensitivity to Viscoelastic Earth Properties , 2017 .

[107]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[108]  R. Kopp,et al.  Probabilistic assessment of sea level during the last interglacial stage , 2009, Nature.

[109]  Alyson G. Wilson,et al.  Integrated Analysis of Computer and Physical Experiments , 2004, Technometrics.

[110]  Matthias Morzfeld,et al.  Iterative Importance Sampling Algorithms for Parameter Estimation , 2016, SIAM J. Sci. Comput..

[111]  Brian Dennis,et al.  Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.

[112]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[113]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[114]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[115]  Hiroaki Ueda,et al.  Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord , 2013 .

[116]  M. J. Bayarri,et al.  Computer model validation with functional output , 2007, 0711.3271.

[117]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[118]  Ryan P. Lively,et al.  Uncertainty quantification via Bayesian inference using Sequential Monte Carlo methods for CO2 adsorption process , 2016 .

[119]  B. Anderson,et al.  The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones , 2007 .

[120]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[121]  P. Moral,et al.  Nonasymptotic analysis of adaptive and annealed Feynman–Kac particle models , 2012, 1209.5654.

[122]  Per Wikman-Svahn,et al.  Characterizing uncertain sea-level rise projections to support investment decisions , 2018, PloS one.

[123]  Murali Haran,et al.  Improving Ice Sheet Model Calibration Using Paleoclimate and Modern Data , 2015, 1510.01676.

[124]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[125]  B. Sansó,et al.  Inferring climate system properties using a computer model , 2008 .

[126]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[127]  Ralf Greve,et al.  Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet : Response to steady-state and transient climate scenarios , 1997 .

[128]  Luca Martino,et al.  Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..

[129]  Jonathan Rougier,et al.  Exploration of parametric uncertainty in a surface mass balance model applied to the Greenland ice sheet , 2012 .

[130]  Richard S. J. Tol,et al.  Global estimates of the impact of a collapse of the West Antarctic ice sheet: an application of FUND , 2005 .