Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America

Simple Summary Natural pearls of Diplodon chilensis, a freshwater clam native to southern South America, are reported and characterized for the first time. The finding also constitutes the first record of pearls in a species of the genus Diplodon. The pearls have different shapes and sizes, and were found in both, male and female specimens. The microstructure and chemical composition of pearls is consistent with those reported in other bivalve species. Abstract The capability to produce pearls is widespread in the phylum Mollusca, including bivalves of the superfamily Unionoidea. Here, we identified and characterized natural pearls formed by Diplodon chilensis, a freshwater clam native to southern South America, using samples obtained from two lakes located in the Chilean Patagonia. Pearls were studied using light and scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. Naturally formed pearls were found in both male and female D. chilensis specimens. Pearls are produced in different shapes, including spherical, ellipsoidal, buttoned, and bumpy, ranging in size from 200 µm to 1.9 mm. The internal microstructure is composed of irregular polygonal tablets, about 0.40 to 0.55 μm in thickness. EDX analysis showed that pearls are composed of calcium carbonate. FTIR and Raman spectra recorded several peaks attributable to the aragonite in pearls of this species, as has been shown in other mollusks. In addition to these results, pearls of different colors are illustrated.

[1]  G. Wray,et al.  The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia , 2021, BMC biology.

[2]  B. Degnan,et al.  Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima , 2021, Frontiers in Genetics.

[3]  Yuewen Deng,et al.  Evolutionary and functional analysis of MyD88 genes in pearl oyster Pinctada fucata martensii. , 2020, Fish & shellfish immunology.

[4]  W. Ponder,et al.  Biology and Evolution of the Mollusca , 2019 .

[5]  W. Ponder,et al.  Shell, Body, and Muscles , 2019 .

[6]  Raymond J. Ritchie,et al.  Effects of Mollusk Size on Growth and Color of Cultured Half-Pearls from Phuket, Thailand , 2019, Gems & Gemology.

[7]  E. Fritsch,et al.  Raman spectroscopy of natural and cultured pearls and pearl producing mollusc shells , 2019, Journal of Raman Spectroscopy.

[8]  Ariadna Burgos,et al.  Human Mollusk Interactions in a Changing World , 2019, Journal of Ethnobiology.

[9]  S. Watabe,et al.  Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata , 2019, BMC Genomics.

[10]  D. G. Gutiérrez Gregoric,et al.  Distribution of the Unionida (Bivalvia, Paleoheterodonta) from Argentina and its conservation in the Southern Neotropical Region , 2018, PloS one.

[11]  S. Planes,et al.  Cultured Pearl Surface Quality Profiling by the Shell Matrix Protein Gene Expression in the Biomineralised Pearl Sac Tissue of Pinctada margaritifera , 2018, Marine Biotechnology.

[12]  T. Häger,et al.  Akoya cultured pearl farming in eastern Australia , 2018 .

[13]  M. Mansur,et al.  Freshwater mussels from South America: state of the art of Unionida, specially Rhipidodontini , 2017 .

[14]  M. Molloy,et al.  Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells , 2017 .

[15]  Wen-jian Wu,et al.  Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl , 2017, Molecular Genetics and Genomics.

[16]  Ahmed Oo,et al.  Ecological Consequences of Oysters Culture , 2016 .

[17]  K. Promdee,et al.  Combination of FTIR and SEM for Identifying Freshwater-Cultured Pearls from Different Quality , 2016 .

[18]  J. Machado,et al.  Phytoplankton composition of the water and gastrointestinal tract of the mussel Diplodon enno (Ortmann, 1921) from São Francisco river (Bahia, Brazil). , 2016, Brazilian journal of biology = Revista brasleira de biologia.

[19]  Ataur Rahman,et al.  Availability of pearl producing marine bivalves in south-eastern coast of Bangladesh and culture potentialities , 2015, Journal of Fisheries.

[20]  Artitaya Homkrajae,et al.  Observations on Pearls Reportedly From the Pinnidae Family (Pen Pearls) , 2014 .

[21]  G. Rosenberg A New Critical Estimate of Named Species-Level Diversity of the Recent Mollusca* , 2014 .

[22]  M. Cusack,et al.  Crystallography of calcite in pearls , 2014 .

[23]  D. Bird,et al.  Global Patterns in the Exploitation of Shellfish , 2014 .

[24]  C. Ky,et al.  Impact of season and grafter skill on nucleus retention and pearl oyster mortality rate in Pinctada margaritifera aquaculture , 2014, Aquaculture International.

[25]  G. Darrigran,et al.  Distribución del género Diplodon (Mollusca: Bivalvia: Hyriidae) en la cuenca del Plata (Argentina) mediante el uso de Colecciones Biológicas , 2013 .

[26]  M. Mansur,et al.  Bivalve distribution in hydrographic regions in South America: historical overview and conservation , 2013, Hydrobiologia.

[27]  B. Degnan,et al.  Pearls , 2013, Current Biology.

[28]  R. Klein,et al.  Archaeological shellfish size and later human evolution in Africa , 2013, Proceedings of the National Academy of Sciences.

[29]  C. Ky,et al.  Family effect on cultured pearl quality in black-lipped pearl oyster Pinctada margaritifera and insights for genetic improvement , 2013 .

[30]  L. Bédouet,et al.  What is the difference in organic matrix of aragonite vs. vaterite polymorph in natural shell and pearl? Study of the pearl-forming freshwater bivalve mollusc Hyriopsis cumingii. , 2013, Materials science & engineering. C, Materials for biological applications.

[31]  Zhifeng Gu,et al.  Characterization of the Pearl Oyster (Pinctada martensii) Mantle Transcriptome Unravels Biomineralization Genes , 2013, Marine Biotechnology.

[32]  Rafael Alves Biologia de Pteria hirundo, ostra perlífera nativa do Brasil , 2012 .

[33]  G. Bauer,et al.  Ecology and Evolution of the Freshwater Mussels Unionoida , 2012, Ecological Studies.

[34]  R. Voeks,et al.  Mollusks of Candomblé: symbolic and ritualistic importance , 2012, Journal of Ethnobiology and Ethnomedicine.

[35]  Hideo Aoki,et al.  Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[36]  D. Jacob,et al.  Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials , 2011 .

[37]  J. Gauthier,et al.  UV-Vis-NIR Reflectance Spectroscopy of Natural-Color Saltwater Cultured Pearls from Pinctada Margaritifera , 2011 .

[38]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[39]  Q. Feng,et al.  Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls , 2010 .

[40]  R. R. N. Alves,et al.  Usos de invertebrados na medicina popular no Brasil e suas implicações para conservação , 2010 .

[41]  J. A. Ritter,et al.  In Situ FTIR Spectroscopic Analysis of Carbonate Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc , 2010 .

[42]  Baoli Wang,et al.  Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China , 2009 .

[43]  R. Wirth,et al.  Nanostructure and composition of bivalve shells , 2009 .

[44]  Cédric Carteret,et al.  Polymorphism Studied by Lattice Phonon Raman Spectroscopy and Statistical Mixture Analysis Method. Application to Calcium Carbonate Polymorphs during Batch Crystallization , 2009 .

[45]  J. Erlandson,et al.  Human impacts on ancient shellfish: a 10,000 year record from San Miguel Island, California , 2008 .

[46]  R. Shor From Single Source to Global Free Market: the Transformation of the Cultured Pearl Industry , 2007 .

[47]  C. Valdovinos,et al.  Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: Implications for biodiversity conservation , 2007 .

[48]  J. Gauthier,et al.  Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi , 2007 .

[49]  E. Parada,et al.  Estado de conocimiento de los Bivalvos dulceacuícolas de Chile , 2006 .

[50]  H. Ma,et al.  Characterization of vaterite in low quality freshwater-cultured pearls , 2006 .

[51]  I. Valdebenito,et al.  Relocation of the freshwater mussel Diplodon chilensis (Hyriidae) as a strategy for its conservation and management , 2005 .

[52]  A. A. Bonetto Nayades de la Patagonia , 2005 .

[53]  V. Grassian,et al.  Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study. , 2005, Physical chemistry chemical physics : PCCP.

[54]  Peter Self,et al.  The origin of the color of pearls in iridescence from nano-composite structures of the nacre , 2004 .

[55]  L. Kiefert,et al.  Cultured Pearls from the Gulf of California, Mexico , 2004 .

[56]  L. Semenas,et al.  Características poblacionales y ciclo de vida de Diplodon chilensis (d'Orbigny, 1835) (Hyriidae, Bivalvia) en el lago Gutiérrez (Patagonia, Argentina) , 2002 .

[57]  S. Elen Identification of Yellow Cultured Pearls from The Black-Lipped Oyster Pinctada Margaritifera , 2002 .

[58]  M. Costa,et al.  Ocorrência de ostras perlíferas no Marajó, rio Pará , 2002 .

[59]  S. Elen Spectral Reflectance and Fluorescence Characteristics of Natural-Color and Heat-Treated "Golden" South Sea Cultured Pearls , 2001 .

[60]  C. Gabrielli,et al.  In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite , 2000 .

[61]  D. Soto,et al.  Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication , 1999 .

[62]  I. Valdebenito,et al.  Growth, age and life span of the freshwater mussel Diplodon chilensis chilensis (GRAY, 1828) , 1989, Archiv für Hydrobiologie.

[63]  H. Campos Limnological study of Araucanian lakes (Chile): With 1 figure and 3 tables in the text , 1984 .

[64]  R. R. Alves,et al.  Chapter 14 – Use and Commercialization of Animals as Decoration∗ , 2018 .

[65]  G. L. Moullac,et al.  Macro‐geographical differences influenced by family‐based expression on cultured pearl grade, shape and colour in the black‐lip ‘pearl oyster’ Pinctada margaritifera: a preliminary bi‐local case study in French Polynesia , 2017 .

[66]  L. Cartier Golden South Sea Cultured Pearls:Cultivation Steps & Gemmological Investigations , 2016 .

[67]  C. Luquet,et al.  Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glaciar lake of North Patagonia , 2014 .

[68]  Benjamin Marie,et al.  The formation and mineralization of mollusk shell. , 2012, Frontiers in bioscience.

[69]  A. Hajduk,et al.  Microstructure and polymorphism of Diplodon chilensis patagonicus (d’Orbigny 1835) recent shells , 2010 .

[70]  Ricardo Figueroa,et al.  Variabilidad genética local del bivalvo dulceacuícola Diplodon chilensis (Gray 1828) proveniente de tres lagos Nahuelbutanos , 2010 .

[71]  G. Capaldo The Río de la Plata Basin , 2009 .

[72]  Donald Jackson,et al.  ANTECEDENTES ARQUEOLÓGICOS DEL GENERO DIPLODON (SPIX, 1827) (BIVALVIA, HYRIIDAE) EN CHILE , 2008 .

[73]  S. Peredo,et al.  DIPLODON PATAGONICUS (BIVALVIA: HYRIIDAE): TO BE OR NOT TO BE , 2008 .

[74]  T. Häger,et al.  Vaterite in freshwater cultured pearls from China and Japan , 2007 .

[75]  K. Scarratt,et al.  Pearls from the lion’s paw scallop , 2004 .

[76]  Chen Zhonghui,et al.  Pearl cultivation in Donggou, Ezhou, Hubei, and cathodoluminescence of cultured pearls , 2003 .

[77]  Pedro Jara-Seguel,et al.  Comparative karyology of lentic and lotic populations of Diplodon chilensis chilensis (Bivalvia: Hyriidae) , 2003 .

[78]  Ángel Contreras,et al.  LA ALMEJA DE AGUA DULCE DIPLODON CHILENSIS (BIVALVIA:HYRIIDAE) POTENCIAL BIOFILTRO PARA DISMINUIR LOS NIVELES DE COLIFORMES EN POZOS: EXPERIMENTO DE LABORATORIO , 2002 .

[79]  W. Ponder,et al.  OVERVIEW OF THE CONSERVATION OF AUSTRALIAN MARINE INVERTEBRATES , 2002 .

[80]  K. Walker,et al.  Freshwater Mussels (Hyriidae) of Australasia , 2001 .

[81]  L. Liping,et al.  Cultured pearls and colour-changed cultured pearls: Raman spectra , 2001 .

[82]  C. Valdovinos,et al.  Tasas de aclarancia de Diplodon chilensis (Bivalvia, Hyriidae): un suspensivoro bentónico dulceacuícola de Chile central , 1996 .

[83]  W. Gutmannsbauer,et al.  Structural and chemical investigations on shells and pearls of nacre forming salt- and fresh-water bivalve molluscs , 1994 .

[84]  S. Paredo,et al.  Un enfoque ecológico evolutivo de las estrategias de historia de vida de los hiridos chilenos (Mollusca, Bivalvia) , 1994 .

[85]  S. Peredo,et al.  Tácticas reproductivas y dinámica poblacional de Diplodon chilensis (Gray, 1828) (Bivalvia: Hyriidae) , 1990 .

[86]  S. Peredo,et al.  Reproductive cycle in the freshwater mussel Diplodon chilensis chilensis (Mollusca: Bivlavia) , 1986 .

[87]  S. Peredo,et al.  GONADAL ORGANIZATION AND GAMETOGENESIS IN THE FRESH-WATER MUSSEL DIPLODON-CHILENSIS-CHILENSIS (MOLLUSCA, BIVALVIA) , 1984 .

[88]  Betty Francis Meehan,et al.  Shell bed to shell midden , 1982 .