High heat flux actively cooled plasma facing components development, realisation and first results in Tore Supra

[1]  R. Mitteau,et al.  Heat flux deposition on plasma-facing components using a convective model with ripple and Shafranov shift , 1999, 2102.11599.

[2]  C. Grisolia Plasma wall interaction during long pulse operation in Tore Supra , 1999 .

[3]  R. Mitteau,et al.  Power deposition and margins on the Tore Supra pump limiter and fabrication of the high heat flux components , 2000 .

[4]  A. Becoulet,et al.  Tore Supra steady-state power and particle injection: the ‘CIMES’ project , 2001 .

[5]  J. Schlosser,et al.  Experience feedback from high heat flux component manufacturing for Tore Supra , 2001 .

[6]  Pascal Garin,et al.  Actively cooled plasma facing components in Tore Supra , 2001 .

[7]  A. Durocher,et al.  Material properties and consequences on the quality of tore supra plasma facing components , 2002 .

[8]  R. Mitteau,et al.  Status of power balance monitoring for long pulse operation at Tore Supra , 2003 .

[9]  D. Guilhem,et al.  Surface temperature measurements on Tokamak target plates with two types of infra red fibres , 2003 .

[10]  A. Becoulet,et al.  Recent fully non-inductive operation results in Tore Supra with 6?min, 1?GJ plasma discharges , 2004 .

[11]  R. Mitteau,et al.  High heat flux components in fusion devices: from current experience in Tore Supra towards the ITER challenge , 2004 .

[12]  T. Loarer,et al.  Evolution of Carbon Tiles During Repetitive Long Pulse Operation in TORE SUPRA , 2004 .

[13]  J. Bucalossi,et al.  Long Discharge Particle Balance and Fuel Retention in Tore Supra , 2004 .

[14]  R. Mitteau,et al.  Hot spot effect on infrared spectral luminance emitted by carbon under plasma particles impact , 2005 .