The Wiener Index of simply generated random trees

Asymptotics are obtained for the mean, variance, and higher moments as well as for the distribution of the Wiener index of a random tree from a simply generated family (or, equivalently, a critical Galton-Watson tree). We also establish a joint asymptotic distribution of the Wiener index and the internal path length, as well as asymptotics for the covariance and other mixed moments. The limit laws are described using functionals of a Brownian excursion. The methods include both Aldous' theory of the continuum random tree and analysis of generating functions.

[1]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Michael Drmota,et al.  Reinforced weak convergence of stochastic processes , 2005 .

[4]  Jean-François Marckert,et al.  The depth first processes of Galton--Watson trees converge to the same Brownian excursion , 2003 .

[5]  L. Bruce Richmond,et al.  The Distribution of Heights of Binary Trees and Other Simple Trees , 1993, Combinatorics, Probability and Computing.

[6]  Joel Spencer ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .

[7]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[8]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[9]  Brendan D. McKay,et al.  The Asymptotic Number of Labeled Connected Graphs with a Given Number of Vertices and Edges , 1990, Random Struct. Algorithms.

[10]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[11]  Ralph Neininger The Wiener Index Of Random Trees , 2002, Comb. Probab. Comput..

[12]  Roger C. Entringer,et al.  On the Wiener index of trees from certain families , 1994, Australas. J Comb..

[13]  Luc Devroye,et al.  Branching Processes and Their Applications in the Analysis of Tree Structures and Tree Algorithms , 1998 .

[14]  Donald E. Knuth The art of computer programming: fundamental algorithms , 1969 .

[15]  Lajos Takács,et al.  Conditional limit theorems for branching processes , 1991 .

[16]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[17]  V. A. Voblyi Wright and Stepanov-Wright coefficients , 1987 .

[18]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[19]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[20]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[21]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[22]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[23]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[24]  G. Louchard The brownian excursion area: a numerical analysis , 1984 .

[25]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[26]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[27]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[28]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .