Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological features. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.

[1]  S. Zipursky,et al.  Transcriptional Programs of Circuit Assembly in the Drosophila Visual System , 2020, Neuron.

[2]  Jure Leskovec,et al.  MARS: discovering novel cell types across heterogeneous single-cell experiments. , 2020, Nature methods.

[3]  Justus M. Kebschull,et al.  Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila , 2020, bioRxiv.

[4]  S. Zipursky,et al.  A Global Temporal Genetic Program for Neural Circuit Formation , 2020, bioRxiv.

[5]  Hongjie Li Single‐cell RNA sequencing in Drosophila: Technologies and applications , 2020, Wiley interdisciplinary reviews. Developmental biology.

[6]  Rana N. El-Danaf,et al.  Neuronal diversity and convergence in a visual system developmental atlas , 2020, Nature.

[7]  J. Sanes,et al.  Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits , 2020, Cell.

[8]  Jure Leskovec,et al.  MARS: discovering novel cell types across heterogeneous single-cell experiments , 2020, Nature Methods.

[9]  P. Schlegel,et al.  Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain , 2020, Current Biology.

[10]  Justus M. Kebschull,et al.  Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting , 2019, Current Biology.

[11]  S. Quake,et al.  Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators , 2019, Cell.

[12]  Kerstin B. Meyer,et al.  BBKNN: fast batch alignment of single cell transcriptomes , 2019, Bioinform..

[13]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.

[14]  E. J. Clowney,et al.  Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body , 2019, bioRxiv.

[15]  L. Luo,et al.  Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons , 2019, Proceedings of the National Academy of Sciences.

[16]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[17]  Yue Cao,et al.  Chemoconnectomics: Mapping Chemical Transmission in Drosophila , 2019, Neuron.

[18]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[19]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[20]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[21]  A. Nern,et al.  Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins , 2018, Neuron.

[22]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[23]  C. Desplan,et al.  Neuronal specification in space and time , 2018, Science.

[24]  I. Amit,et al.  Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling , 2018, Developmental cell.

[25]  James M. Jeanne,et al.  The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons , 2018, Neuron.

[26]  Bosiljka Tasic Single cell transcriptomics in neuroscience: cell classification and beyond , 2018, Current Opinion in Neurobiology.

[27]  Vilas Menon,et al.  Continuous Variation within Cell Types of the Nervous System , 2018, Trends in Neurosciences.

[28]  L. Luo,et al.  Linking neuronal lineage and wiring specificity , 2018, Neural Development.

[29]  N. Perrimon,et al.  A gene-specific T2A-GAL4 library for Drosophila , 2018, eLife.

[30]  Jie Qiao,et al.  A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex , 2018, Nature.

[31]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[32]  Sinisa Hrvatin,et al.  Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement , 2018, Proceedings of the National Academy of Sciences.

[33]  G. Rubin,et al.  Genetic Reagents for Making Split-GAL4 Lines in Drosophila , 2017, Genetics.

[34]  Verena,et al.  A gene-specific T 2 AGAL 4 library for Drosophila 1 , 2018 .

[35]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[36]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[37]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[38]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[39]  H. Kazama,et al.  Origins of Cell-Type-Specific Olfactory Processing in the Drosophila Mushroom Body Circuit , 2017, Neuron.

[40]  Bing Wu,et al.  Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing , 2017, Cell.

[41]  Leland McInnes,et al.  hdbscan: Hierarchical density based clustering , 2017, J. Open Source Softw..

[42]  Hugo J. Bellen,et al.  Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins , 2015, Cell.

[43]  Luke P. Lee,et al.  Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates , 2015, Science.

[44]  L. Luo Principles of Neurobiology , 2015 .

[45]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[46]  F. Diao,et al.  Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. , 2015, Cell reports.

[47]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[48]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[49]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[50]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[51]  L. Luo,et al.  Genetic Control of Wiring Specificity in the Fly Olfactory System , 2014, Genetics.

[52]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[53]  C. Doe,et al.  Temporal fate specification and neural progenitor competence during development , 2013, Nature Reviews Neuroscience.

[54]  Melissa M. Harrison,et al.  CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand , 2013, Fly.

[55]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[56]  Liang Liang,et al.  GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons , 2013, Neuron.

[57]  Y. Liou,et al.  A Cullin1-Based SCF E3 Ubiquitin Ligase Targets the InR/PI3K/TOR Pathway to Regulate Neuronal Pruning , 2013, PLoS biology.

[58]  Rachel I. Wilson Early olfactory processing in Drosophila: mechanisms and principles. , 2013, Annual review of neuroscience.

[59]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[60]  M. Stopfer,et al.  Dye fills reveal additional olfactory tracts in the protocerebrum of wild‐type Drosophila , 2012, The Journal of comparative neurology.

[61]  Tzumin Lee,et al.  Lineage Analysis of Drosophila Lateral Antennal Lobe Neurons Reveals Notch-Dependent Binary Temporal Fate Decisions , 2012, PLoS biology.

[62]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[63]  L. Luo,et al.  Teneurins Instruct Synaptic Partner Matching in an Olfactory Map , 2012, Nature.

[64]  Y. Liou,et al.  Intrinsic Epigenetic Factors Cooperate with the Steroid Hormone Ecdysone to Govern Dendrite Pruning in Drosophila , 2011, Neuron.

[65]  A. Kolodkin,et al.  Mechanisms and molecules of neuronal wiring: a primer. , 2011, Cold Spring Harbor perspectives in biology.

[66]  C. Desplan,et al.  Stochastic mechanisms of cell fate specification that yield random or robust outcomes. , 2010, Annual review of cell and developmental biology.

[67]  Yisheng He,et al.  A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM , 2010, PLoS biology.

[68]  Lily Yeh Jan,et al.  Branching out: mechanisms of dendritic arborization , 2010, Nature Reviews Neuroscience.

[69]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[70]  Sarah A. Teichmann,et al.  FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database , 2009, Nucleic Acids Res..

[71]  Boon Chuan Low,et al.  A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning , 2009, Nature Neuroscience.

[72]  L. Luo,et al.  Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map , 2009, Nature Neuroscience.

[73]  Masahito Yamagata,et al.  Many paths to synaptic specificity. , 2009, Annual review of cell and developmental biology.

[74]  E. Suzuki,et al.  A Screen of Cell-Surface Molecules Identifies Leucine-Rich Repeat Proteins as Key Mediators of Synaptic Target Selection , 2008, Neuron.

[75]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[76]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[77]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[78]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[79]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[80]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[81]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[82]  Julie M. Sullivan,et al.  FlyMine: an integrated database for Drosophila and Anopheles genomics , 2007, Genome Biology.

[83]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[84]  L. Luo,et al.  A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining , 2006, Nature Protocols.

[85]  L. Luo,et al.  Developmentally programmed remodeling of the Drosophila olfactory circuit , 2005, Development.

[86]  Ariane Ramaekers,et al.  Developmental origin of wiring specificity in the olfactory system of Drosophila , 2004, Development.

[87]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[88]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[89]  L. Luo,et al.  Cell-Autonomous Requirement of the USP/EcR-B Ecdysone Receptor for Mushroom Body Neuronal Remodeling in Drosophila , 2000, Neuron.

[90]  L. Luo,et al.  Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. , 1999, Development.

[91]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[92]  N. Perrimon,et al.  Identifying loci required for follicular patterning using directed mosaics. , 1998, Development.

[93]  J. Truman,et al.  Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. , 1998, Development.

[94]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[95]  S. Zipursky,et al.  Induction of Drosophila eye development by decapentaplegic. , 1997, Development.

[96]  C. Thummel,et al.  Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. , 1996, Trends in genetics : TIG.

[97]  R. Levine,et al.  Remodeling of the insect nervous system , 1995, Current Opinion in Neurobiology.

[98]  Y. Jan,et al.  Genetic control of cell fate specification in Drosophila peripheral nervous system. , 1994, Annual review of genetics.