European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene.

Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10(-11). SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the 'urogenous contact hypothesis' that urine production and voiding frequency modify the risk of UBC.

Paolo Vineis | Abbas Ghaderi | Simonetta Guarrera | Giuseppe Matullo | Kari Stefansson | Gunnar Steineck | Jan G Hengstler | Gudmar Thorleifsson | Annika Lindblom | Maurice P Zeegers | Silvia Selinski | Stefano Porru | J Alfred Witjes | Ananya Choudhury | Alireza Aminsharifi | Klaus Golka | Frank Buntinx | Unnur Thorsteinsdottir | Julius Gudmundsson | Thorunn Rafnar | Jennifer H Barrett | Silvia Polidoro | Leonard H van den Berg | D. Gudbjartsson | L. Kiemeney | U. Thorsteinsdóttir | A. Kong | R. Ophoff | K. Stefánsson | J. Barrett | D. Bishop | P. Vineis | P. Sulem | G. Thorleifsson | H. Helgadottir | M. Zeegers | L. H. van den Berg | J. Veldink | J. Gudmundsson | T. Rafnar | S. Stacey | K. Aben | J. Witjes | E. Jonsson | J. Mayordomo | S. Besenbacher | J. Jónasson | G. Matullo | A. Kiltie | S. Porru | F. Buntinx | E. Kellen | Rajiv Kumar | P. Rudnai | E. Gurzău | K. Koppová | Manuel Sanchez | A. Lindblom | G. Steineck | G. Verhaegh | S. Vermeulen | J. Hengstler | S. Guarrera | M. D. García-Prats | S. Polidoro | C. Sacerdote | M. Knowles | A. Ghaderi | L. Tryggvadottir | A. Panadero | V. Pétursdóttir | S. Nikulásson | G. Geirsson | A. Grotenhuis | A. Choudhury | C. Arici | P. D. de Verdier | H. Gerullis | D. Ovsiannikov | S. Selinski | K. Golka | C. Zanon | F. Elliott | Hjordis Bjarnason | J. Fostinelli | Patrick Sulem | Katja K Aben | Lambertus A Kiemeney | Augustine Kong | Roel A Ophoff | Cecilia Arici | Laufey Tryggvadottir | Carlotta Sacerdote | Christina A Hulsbergen-van de Kaa | Gerald W Verhaegh | Carlo Zanon | Simon N Stacey | Sita H Vermeulen | Peter Rudnai | Rajiv Kumar | Eugene Gurzau | Kvetoslava Koppova | José I Mayordomo | Daniel Gudbjartsson | Eliane Kellen | Gabriel Valdivia | Hafdis T. Helgadottir | Hrefna Johannsdottir | Anne J Grotenhuis | Soren Besenbacher | Hjordis Bjarnason | Hafdis Helgadottir | Jon Gunnlaugur Jonasson | Eirikur Jonsson | Gudmundur Geirsson | Sigfus Nikulasson | Vigdis Petursdottir | D Timothy Bishop | Sei Chung-Sak | Faye Elliott | Margaret A Knowles | Petra J de Verdier | Charlotta Ryk | Angeles Panadero | José I Sanz-Velez | Manuel Sanchez | Gabriel Valdivia | Maria D Garcia-Prats | Holger Gerullis | Daniel Ovsiannikov | Abdolaziz Khezri | Mahyar Malekzadeh | Jan H Veldink | Jacopo Fostinelli | Daniele Andreoli | Anne E Kiltie | A. Aminsharifi | Hafdis T Helgadottir | Mahyar Malekzadeh | A. Khezri | C. Hulsbergen–van de Kaa | Hrefna S Johannsdottir | Charlotta Ryk | Sei Chung-Sak | Daniele Andreoli | M. García-Prats | S. Nikulasson | Hrefna Johannsdottir | Rajiv Kumar | Søren Besenbacher

[1]  G. Stewart The emerging physiological roles of the SLC14A family of urea transporters , 2011, British journal of pharmacology.

[2]  I. Gram,et al.  Fluid intake and the risk of urothelial cell carcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC) , 2011, International journal of cancer.

[3]  Jianfeng Xu,et al.  Chromosome 4p16.3 variant modify bladder cancer risk in a Chinese population. , 2011, Carcinogenesis.

[4]  M. Pike,et al.  Genetic variations on chromosomes 5p15 and 15q25 and bladder cancer risk: findings from the Los Angeles-Shanghai bladder case-control study. , 2011, Carcinogenesis.

[5]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[6]  K. Ickstadt,et al.  Rs710521[A] on chromosome 3q28 close to TP63 is associated with increased urinary bladder cancer risk , 2010, Archives of Toxicology.

[7]  D. Gudbjartsson,et al.  Correction: Association of Variants at UMOD with Chronic Kidney Disease and Kidney Stones—Role of Age and Comorbid Diseases , 2010, PLoS Genetics.

[8]  A. Gylfason,et al.  Fine-scale recombination rate differences between sexes, populations and individuals , 2010, Nature.

[9]  M. Pike,et al.  Risk of Urinary Bladder Cancer Is Associated with 8q24 Variant rs9642880[T] in Multiple Racial/Ethnic Groups: Results from the Los Angeles–Shanghai Case–Control Study , 2010, Cancer Epidemiology, Biomarkers & Prevention.

[10]  William Wheeler,et al.  A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci , 2010, Nature Genetics.

[11]  Paolo Vineis,et al.  A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer , 2010, Nature Genetics.

[12]  Shizhi Wang,et al.  Genetic variation in PSCA and bladder cancer susceptibility in a Chinese population. , 2010, Carcinogenesis.

[13]  Yusuke Nakamura,et al.  Genome-wide association study of hematological and biochemical traits in a Japanese population , 2010, Nature Genetics.

[14]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[15]  Jan G. Hengstler,et al.  Susceptibility to urinary bladder cancer: relevance of rs9642880[T], GSTM1 0/0 and occupational exposure. , 2009, Pharmacogenetics and genomics.

[16]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[17]  Q. Wei,et al.  Common genetic variants on 8q24 contribute to susceptibility to bladder cancer in a Chinese population. , 2009, Carcinogenesis.

[18]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[19]  D. Schilling,et al.  Economic aspects of bladder cancer: what are the benefits and costs? , 2009, World Journal of Urology.

[20]  L. Kiemeney,et al.  The present and future burden of urinary bladder cancer in the world , 2009, World Journal of Urology.

[21]  Craig P. Smith Mammalian urea transporters , 2009, Experimental physiology.

[22]  Paolo Vineis,et al.  Sequence variants at the TERT-CLPTM1L locus associate with many cancer types , 2009, Nature Genetics.

[23]  Jian Gu,et al.  Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer , 2009, Nature Genetics.

[24]  Tony Fletcher,et al.  Sequence variant on 8q24 confers susceptibility to urinary bladder cancer , 2008, Nature Genetics.

[25]  M. Greene,et al.  Familial and genetic risk of transitional cell carcinoma of the urinary tract. , 2008, Urologic oncology.

[26]  T. Reckwitz,et al.  The Influence of Polymorphisms of Glutathione S-Transferases M1 and M3 on the Development of Human Urothelial Cancer , 2008, Journal of toxicology and environmental health. Part A.

[27]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[28]  N. Malats,et al.  Risk of Bladder Cancer Associated with Family History of Cancer: Do Low-Penetrance Polymorphisms Account for the Increase in Risk? , 2007, Cancer Epidemiology Biomarkers & Prevention.

[29]  L. Kiemeney,et al.  Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. , 2007, Kidney international.

[30]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[31]  E. Lukhtanov,et al.  A novel endonuclease IV post-PCR genotyping system , 2006, Nucleic acids research.

[32]  L. Kiemeney,et al.  Segregation analysis of urothelial cell carcinoma. , 2006, European journal of cancer.

[33]  M. Zeegers,et al.  Fruit consumption reduces the effect of smoking on bladder cancer risk. The Belgian case control study on bladder cancer , 2006, International journal of cancer.

[34]  A. Zlotta NAT2 Slow Acetylation, GSTM1 Null Genotype, and Risk of Bladder Cancer: Results from the Spanish Bladder Cancer Study and Meta-Analyses , 2006 .

[35]  K. Hemminki,et al.  Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. , 2005, Carcinogenesis.

[36]  A. Piazza,et al.  Polymorphisms/Haplotypes in DNA Repair Genes and Smoking: A Bladder Cancer Case-Control Study , 2005, Cancer Epidemiology Biomarkers & Prevention.

[37]  J. Barrett,et al.  The polyAT, intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder , 2005, British Journal of Cancer.

[38]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[39]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[40]  M. Kogevinas,et al.  NAT 2 slow acetylation , GSTM 1 null genotype , and risk of bladder cancer : results from the Spanish Bladder Cancer Study and meta-analyses , 2005 .

[41]  D. Gudbjartsson,et al.  Cancer as a Complex Phenotype: Pattern of Cancer Distribution within and beyond the Nuclear Family , 2004, PLoS medicine.

[42]  Mogens Kruhøffer,et al.  Gene Expression in the Urinary Bladder , 2004, Cancer Research.

[43]  P. Brennan,et al.  Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. , 2003, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[44]  Mark Gurney,et al.  The gene encoding phosphodiesterase 4D confers risk of ischemic stroke , 2003, Nature Genetics.

[45]  J. Adolfsson,et al.  A Population-based Study of 538 Patients with Newly Detected Urinary Bladder Neoplasms Followed during 5 Years , 2003, Scandinavian journal of urology and nephrology.

[46]  Torben F. Ørntoft,et al.  Identifying distinct classes of bladder carcinoma using microarrays , 2003, Nature Genetics.

[47]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[48]  C. Epstein,et al.  Urea-selective Concentrating Defect in Transgenic Mice Lacking Urea Transporter UT-B* , 2002, The Journal of Biological Chemistry.

[49]  L. Kiemeney,et al.  Familial aggregation of urothelial cell carcinoma , 2002, International journal of cancer.

[50]  J. Hewitt,et al.  The murine urea transporter genes Slc14a1 and Slc14a2 occur in tandem on chromosome 18 , 1999, Cytogenetic and Genome Research.

[51]  E. Rimm,et al.  Fluid intake and the risk of bladder cancer in men. , 1999, The New England journal of medicine.

[52]  Eric S. Lander,et al.  Faster Multipoint Linkage Analysis Using Fourier Transforms , 1998, J. Comput. Biol..

[53]  J. Todd,et al.  The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility. , 1997, Human molecular genetics.

[54]  R. Gunn,et al.  Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. , 1992, Journal of the American Society of Nephrology : JASN.

[55]  M. Butler,et al.  Frequency of urination and its effects on metabolism, pharmacokinetics, blood hemoglobin adduct formation, and liver and urinary bladder DNA adduct levels in beagle dogs given the carcinogen 4-aminobiphenyl. , 1991, Cancer research.

[56]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Chetrit,et al.  Drinking, micturition habits, and urine concentration as potential risk factors in urinary bladder cancer. , 1987, Journal of the National Cancer Institute.