Embryology in deep time.

[1]  J. Schiffbauer,et al.  Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization , 2014 .

[2]  Ge Wang,et al.  Possible Animal Embryos from the Lower Cambrian (Stage 3) Shuijingtuo Formation, Hubei Province, South China , 2014 .

[3]  J. Hagadorn,et al.  The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China) , 2014 .

[4]  V. K. Mathur,et al.  First record of metazoan eggs and embryos from early Cambrian Chert Member of Deo ka Tibba Formation, Tal Group, Uttarakhand Lesser Himalaya , 2014, Journal of the Geological Society of India.

[5]  B. Pratt,et al.  Possible Algal Origin and Life Cycle of Ediacaran Doushantuo Microfossils with Dextral Spiral Structure , 2014, Journal of Paleontology.

[6]  S. Bengtson,et al.  Distinguishing biology from geology in soft-tissue preservation. , 2014 .

[7]  Jian Han,et al.  Early Cambrian Pentamerous Cubozoan Embryos from South China , 2013, PloS one.

[8]  R. Raff,et al.  Contingent interactions among biofilm‐forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos , 2013, Evolution & development.

[9]  J. Reimer,et al.  A Diploblastic Radiate Animal at the Dawn of Cambrian Diversification with a Simple Body Plan: Distinct from Cnidaria? , 2013, PLoS ONE.

[10]  M. Stampanoni,et al.  Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides , 2013, Proceedings of the Royal Society B: Biological Sciences.

[11]  F. Marone,et al.  Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians , 2012, Proceedings of the Royal Society B: Biological Sciences.

[12]  P. Donoghue,et al.  New palaeoscolecid worms from the Furongian (upper Cambrian) of Hunan, South China: is Markuelia an embryonic palaeoscolecid? , 2012 .

[13]  F. Marone,et al.  Response to Comment on “Fossilized Nuclei and Germination Structures Identify Ediacaran ‘Animal Embryos’ as Encysting Protists” , 2012, Science.

[14]  A. Knoll,et al.  Comment on “Fossilized Nuclei and Germination Structures Identify Ediacaran ‘Animal Embryos’ as Encysting Protists” , 2012, Science.

[15]  R. Raff,et al.  Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils , 2012, Proceedings of the Royal Society B: Biological Sciences.

[16]  F. Marone,et al.  Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists , 2011, Science.

[17]  N. Butterfield Terminal Developments in Ediacaran Embryology , 2011, Science.

[18]  B. Pratt,et al.  Embryonic Development of a Middle Cambrian (500 Myr Old) Scalidophoran Worm , 2011, Journal of Paleontology.

[19]  F. Marone,et al.  The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans , 2010 .

[20]  P. Donoghue,et al.  Are palaeoscolecids ancestral ecdysozoans? , 2010, Evolution & development.

[21]  Feng Gao,et al.  Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China , 2009, Proceedings of the National Academy of Sciences.

[22]  Feng Gao,et al.  Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications , 2009 .

[23]  M. Purnell,et al.  Distinguishing heat from light in debate over controversial fossils , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  N. Gostling,et al.  ONTOGENY AND TAPHONOMY: AN EXPERIMENTAL TAPHONOMY STUDY OF THE DEVELOPMENT OF THE BRINE SHRIMP ARTEMIA SALINA , 2009 .

[25]  S. Bengtson,et al.  A new species of Markuelia from the Middle Cambrian of Australia , 2009 .

[26]  R. Raff,et al.  Embryo fossilization is a biological process mediated by microbial biofilms , 2008, Proceedings of the National Academy of Sciences.

[27]  Marco Stampanoni,et al.  Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy , 2008, Evolution & development.

[28]  S. Bengtson,et al.  Octoradiate Spiral Organisms in the Ediacaran of South China , 2008 .

[29]  Chen-Yu Zhang,et al.  Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China , 2007, Proceedings of the National Academy of Sciences.

[30]  S. Joye,et al.  Palaeontology: Undressing and redressing Ediacaran embryos (Reply) , 2007, Nature.

[31]  S. Xiao,et al.  Palaeontology: Undressing and redressing Ediacaran embryos , 2007, Nature.

[32]  D. Xiping Developmental sequence of Cambrian embryo Markuelia , 2007 .

[33]  S. Bengtson,et al.  Embryonic and post‐embryonic development of the Early Cambrian cnidarian Olivooides , 2007 .

[34]  S. Joye,et al.  Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.

[35]  P. Donoghue Palaeontology: Embryonic identity crisis , 2007, Nature.

[36]  A. Scott,et al.  Silicified egg clusters from a Middle Cambrian Burgess Shale–type deposit, Guizhou, south China , 2006 .

[37]  Marco Stampanoni,et al.  Cellular and Subcellular Structure of Neoproterozoic Animal Embryos , 2006, Science.

[38]  S. Xiao,et al.  EARLY CAMBRIAN METAZOAN EGGS, EMBRYOS, AND PHOSPHATIC MICROFOSSILS FROM NORTHWESTERN CANADA , 2006, Journal of Paleontology.

[39]  Marco Stampanoni,et al.  Synchrotron X-ray tomographic microscopy of fossil embryos , 2006, Nature.

[40]  E. Davidson,et al.  Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China , 2006, Science.

[41]  R. Raff,et al.  Experimental taphonomy shows the feasibility of fossil embryos. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Bengtson,et al.  Fossilized embryos are widespread but the record is temporally and taxonomically biased , 2006, Evolution & development.

[43]  Junyuan Chen,et al.  Precambrian phosphatized embryos and larvae from the Doushantuo Formation and their affinities, Guizhou (SW China) , 2005 .

[44]  P. Donoghue,et al.  The anatomy, affinity, and phylogenetic significance of Markuelia , 2005, Evolution & development.

[45]  Philip C. J. Donoghue,et al.  Evolving form and function: fossils and development , 2005 .

[46]  S. Bengtson,et al.  Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" , 2004, Science.

[47]  Maoyan Zhu,et al.  New early Cambrian bilaterian embryos and larvae from China , 2004 .

[48]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[49]  Maoyan Zhu,et al.  Lower Cambrian Small Shelly Fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance , 2004 .

[50]  A. Braun,et al.  Lower Cambrian yolk-pyramid embryos from Southern Shaanxi, China , 2004 .

[51]  P. Donoghue,et al.  Fossil embryos from the Middle and Late Cambrian period of Hunan, south China , 2004, Nature.

[52]  AndreasMAAS,et al.  Lower Cambrian yolk-pyramid embryos from Southern Shaanxi, China , 2004 .

[53]  S. Bengtson,et al.  Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China , 2004 .

[54]  Derek E. G. Briggs,et al.  THE ROLE OF DECAY AND MINERALIZATION IN THE PRESERVATION OF SOFT-BODIED FOSSILS , 2003 .

[55]  E. Davidson,et al.  Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. , 2002, Developmental biology.

[56]  S. Xiao Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos , 2002, Paleobiology.

[57]  A. Knoll,et al.  Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Forey,et al.  Conodont affinity and chordate phylogeny , 2000, Biological reviews of the Cambridge Philosophical Society.

[59]  E. Davidson,et al.  Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Knoll,et al.  Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. , 2007, Lethaia.

[61]  Qing Huo Liu,et al.  Response to “Comment on ‘The complete Schwarzschild interior and exterior solution in the harmonic coordinate system’ ” [J. Math. Phys. 40, 4177 (1999)] , 1999 .

[62]  S. Bengtson,et al.  CNIDARIAN-LIKE EMBRYOS ASSOCIATED WITH THE FIRST SHELLY FOSSILS IN SIBERIA , 1999 .

[63]  S. Morris Eggs and embryos from the Cambrian. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  Chen,et al.  Precambrian sponges with cellular structures , 1998, Science.

[65]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[66]  S. Bengtson,et al.  Fossilized Metazoan Embryos from the Earliest Cambrian , 1997 .

[67]  B. Pratt,et al.  Middle Cambrian Arthropod Embryos with Blastomeres , 1994, Science.

[68]  Derek E. G. Briggs,et al.  Phosphatization of soft-tissue in experiments and fossils , 1993, Journal of the Geological Society.

[69]  S. Morris,et al.  Carinachitiids, hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China , 1992, Journal of Paleontology.

[70]  B. Mattiasson,et al.  Acetic acid and phosphatic fossils; a warning , 1985 .

[71]  S. Zuckerman Embryos and Ancestors , 1941, Nature.

[72]  G. Beer Embryos and ancestors , 1940 .