Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields

One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the one-dimensional Schrodinger equation in momentum space for a particle in the commonly used soft-core Coulomb potential. By using this scheme we develop two numerical approaches to the time-dependent Schrodinger equation in momentum space. The first approach employs the expansion of the momentum-space wave function over the eigenstates of the field-free Hamiltonian, and it is shown to be more efficient for laser parameters usual in strong field physics. The second approach employs the Crank-Nicolson scheme or the method of lines for time-propagation. The both methods are readily applicable for large-scale numerical simulations in one-dimensional model systems.

[1]  S. Chu,et al.  Strong field effects in above-threshold detachment of a model negative ion , 1992 .

[2]  F. Catoire,et al.  Extraction of the absolute value of the photoelectron spectrum probability density by means of the resolvent technique , 2012 .

[3]  Yong Rae Kwon,et al.  Hadronic Atoms in Momentum Space , 1978 .

[4]  Direct and indirect pathways in strong field atomic ionization dynamics. , 2002, Physical review letters.

[5]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[6]  É. Cormier,et al.  Above-threshold ionization spectrum of hydrogen using B-spline functions , 1997 .

[7]  M. Nurhuda,et al.  NUMERICAL SOLUTION OF TIME-DEPENDENT SCHRODINGER EQUATION FOR MULTIPHOTON PROCESSES : A MATRIX ITERATIVE METHOD , 1999 .

[8]  Su,et al.  Numerical simulations of multiphoton ionization and above-threshold electron spectra. , 1988, Physical review. A, General physics.

[9]  Vladimir P. Krainov,et al.  Multiphoton Processes in Atoms , 2000 .

[10]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[11]  E. Gross,et al.  Optimal control of strong-field ionization with time-dependent density-functional theory , 2013, 1309.0786.

[12]  B. B. Augstein,et al.  Bohmian-trajectory analysis of high-order-harmonic generation: Ensemble averages, nonlocality, and quantitative aspects , 2013, 1301.1916.

[13]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  B. Pons,et al.  One-electron atom in a strong and short laser pulse: Comparison of classical and quantum descriptions , 2009 .

[16]  A. Becker,et al.  Intense-field many-body S-matrix theory , 2005 .

[17]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[18]  Jiang,et al.  Strong-field effects of the one-dimensional hydrogen atom in momentum space. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  Esa Räsänen,et al.  Strong-field-ionization suppression by light-field control , 2012 .

[20]  High-order-harmonic generation from diatomic molecules in driving fields with nonvanishing ellipticity: A generalized interference condition , 2013, 1305.4556.

[21]  Xiaojun Liu,et al.  Electron–electron correlation in strong laser fields , 2011 .

[22]  Dieter Bauer,et al.  Above-threshold ionization by few-cycle pulses , 2006 .

[23]  Schafer,et al.  Energy analysis of time-dependent wave functions: Application to above-threshold ionization. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  L. Madsen,et al.  Extracting continuum information from Ψ ( t ) in time-dependent wave-packet calculations , 2007 .

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[27]  Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized pseudospectral method , 2011 .

[28]  Lande subtraction method with finite integration limits and application to strong-field problems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. Walker,et al.  Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements , 1999 .

[30]  Herbert Walther,et al.  Above-threshold ionization: From classical features to quantum effects , 2002 .

[31]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[32]  Shih-Da Jheng,et al.  A theoretical study on the strong-field ionization of the lithium atom , 2013 .

[33]  S. Chu,et al.  Above-threshold-ionization spectra from the core region of a time-dependent wave packet: An ab initio time-dependent approach , 2009 .

[34]  F. Ehlotzky,et al.  Scattering and reaction processes in powerful laser fields , 2003 .

[35]  T. F. Jiang,et al.  Calculation of atomic hydrogen and its photoelectron spectra in momentum space , 2008, Comput. Phys. Commun..

[36]  Eberly,et al.  Numerical simulation of multiphoton photodetachment of H- ions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  Burton S. Garbow,et al.  EISPACK — A package of matrix eigensystem routines , 1974 .

[38]  Dieter Bauer,et al.  Qprop: A Schrödinger-solver for intense laser-atom interaction , 2005, Comput. Phys. Commun..

[39]  Knight,et al.  Calculation of the background emitted during high-harmonic generation. , 1992, Physical review. A, Atomic, molecular, and optical physics.