Star-forming galaxies provide a larger contribution to the isotropic gamma-ray background than misaligned active galactic nuclei

The total extragalactic γ-ray flux provides a powerful probe into the origin and evolution of the highest energy processes in our universe. An important component of this emission is the isotropic γ-ray background (IGRB), composed of sources that cannot be individually resolved by current experiments. Previous studies have determined that the IGRB can be dominated by either misaligned active galactic nuclei (mAGN) or star-forming galaxies (SFGs). However, these analyses are limited, because they have utilized binary source classifications and examined only one source class at a time. We perform the first combined joint-likelihood analysis that simultaneously correlates the γ-ray luminosity of extragalactic objects with both star-formation and mAGN activity. We find that SFGs produce 48+33 -20% of the total IGRB at 1 GeV and 56+40 -23% of the total IGRB at 10 GeV. The contribution of mAGN is more uncertain, but can also be significant. Future work to quantify the radio and infrared properties of nearby galaxies could significantly improve these constraints.

[1]  J. Krizmanic,et al.  High-Energy Neutrinos from NGC 1068 , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[2]  A. Kheirandish,et al.  High-energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes , 2021, The Astrophysical Journal.

[3]  G. Miele,et al.  Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  J. F. Albacete-Colombo,et al.  γ-ray/infrared luminosity correlation of star-forming galaxies , 2020, Astronomy & Astrophysics.

[5]  M. Ajello,et al.  Source-count Distribution of Gamma-Ray Blazars , 2020, The Astrophysical Journal.

[6]  M. Ajello,et al.  The γ-Ray Emission of Star-forming Galaxies , 2020, The Astrophysical Journal.

[7]  F. Donato,et al.  Testing gamma-ray models of blazars in the extragalactic sky , 2019, Physical Review D.

[8]  Y. Inoue,et al.  On the Origin of High-energy Neutrinos from NGC 1068: The Role of Nonthermal Coronal Activity , 2019, The Astrophysical Journal.

[9]  T. Linden Robust method for treating astrophysical mismodeling in dark matter annihilation searches of dwarf spheroidal galaxies , 2019, Physical Review D.

[10]  P. Mészáros,et al.  Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection. , 2019, Physical review letters.

[11]  M. Malkan,et al.  The Extragalactic Gamma-Ray Background from Core-dominated Radio Galaxies , 2019, The Astrophysical Journal.

[12]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[13]  R. Trotta,et al.  A global analysis of dark matter signals from 27 dwarf spheroidal galaxies using 11 years of Fermi-LAT observations , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  A. Fedynitch,et al.  IceCube neutrinos from hadronically powered gamma-ray galaxies , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  M. Razzano,et al.  Unresolved Gamma-Ray Sky through its Angular Power Spectrum. , 2018, Physical review letters.

[16]  J. Mao,et al.  Determining the Core Radio Luminosity Function of Radio AGNs via Copula , 2018, The Astrophysical Journal Supplement Series.

[17]  D. Hooper,et al.  Active galactic nuclei and the origin of IceCube's diffuse neutrino flux , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  T. B. Watson,et al.  Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. , 2018, Physical review letters.

[19]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[20]  C. Blanco γ-cascade: a simple program to compute cosmological gamma-ray propagation , 2018, Journal of Cosmology and Astroparticle Physics.

[21]  D. Hooper,et al.  Novel gamma-ray signatures of PeV-scale dark matter , 2017, 1712.02805.

[22]  V. Pavlidou,et al.  Extragalactic gamma-ray background from star-forming galaxies: Will empirical scalings suffice? , 2017, Monthly Notices of the Royal Astronomical Society.

[23]  M. Ajello,et al.  Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics , 2017, 1711.03111.

[24]  D. Hooper,et al.  High-energy gamma rays and neutrinos from nearby radio galaxies , 2017, 1706.07047.

[25]  Kohta Murase,et al.  Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures , 2017, 1704.00015.

[26]  M. Salvato,et al.  Active galactic nuclei vs. host galaxy properties in the COSMOS field , 2017, 1702.07357.

[27]  M. Fornasa,et al.  Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background , 2017, 1701.06988.

[28]  T. Linden Star-Forming Galaxies Significantly Contribute to the Isotropic Gamma-Ray Background , 2016, 1612.03175.

[29]  J. C. D'iaz-V'elez,et al.  THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX , 2016, 1611.03874.

[30]  D. Gerdes,et al.  SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.

[31]  F. Prada,et al.  Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation , 2016, 1608.07289.

[32]  C. Rojas-Bravo,et al.  Search for gamma-ray emission from star-forming galaxies with Fermi LAT , 2016, 1608.04413.

[33]  C. Pfrommer,et al.  Cosmic ray-driven galactic winds: streaming or diffusion? , 2016, 1608.02585.

[34]  G. Merino,et al.  OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA , 2016, The Astrophysical Journal.

[35]  B. Safdi,et al.  DECIPHERING CONTRIBUTIONS TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM 2 GeV TO 2 TeV , 2016, 1606.04101.

[36]  D. Hooper A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux , 2016, 1605.06504.

[37]  A. Cuoco,et al.  STATISTICAL MEASUREMENT OF THE GAMMA-RAY SOURCE-COUNT DISTRIBUTION AS A FUNCTION OF ENERGY , 2016, 1605.04256.

[38]  V. Springel,et al.  GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES , 2016, 1605.00643.

[39]  P. M'esz'aros,et al.  REVISITING THE CONTRIBUTIONS OF SUPERNOVA AND HYPERNOVA REMNANTS TO THE DIFFUSE HIGH-ENERGY BACKGROUNDS: CONSTRAINTS ON VERY HIGH REDSHIFT INJECTION , 2016, 1604.08131.

[40]  D. Hooper,et al.  Radio galaxies dominate the high-energy diffuse gamma-ray background , 2016, 1604.08505.

[41]  L. A. Antonelli,et al.  Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster , 2016, 1602.03099.

[42]  P. Mészáros,et al.  Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources , 2015, 1512.08513.

[43]  A. Cuoco,et al.  UNVEILING THE GAMMA-RAY SOURCE COUNT DISTRIBUTION BELOW THE FERMI DETECTION LIMIT WITH PHOTON STATISTICS , 2015, 1512.07190.

[44]  K. Murase Active Galactic Nuclei as High-Energy Neutrino Sources , 2015, 1511.01590.

[45]  K. Bechtol,et al.  Evidence against Star-forming Galaxies as the Dominant Source of Icecube Neutrinos , 2015, 1511.00688.

[46]  M. Ahlers,et al.  Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. , 2015, Physical review letters.

[47]  M. Kachelrieß,et al.  Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino backgrounds , 2015, 1507.07534.

[48]  P. O. Hulth,et al.  A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE , 2015, 1507.03991.

[49]  K. Bechtol,et al.  THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND AND IMPLICATIONS FOR DARK MATTER ANNIHILATION , 2015, 1501.05301.

[50]  J. Chiang,et al.  THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV , 2014, The Astrophysical Journal.

[51]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[52]  S. M. Saba,et al.  High-energy neutrinos from radio galaxies , 2014, 1406.0506.

[53]  T. Paul,et al.  What IceCube data tell us about neutrino emission from star-forming galaxies (so far) , 2014, 1405.7648.

[54]  I. Tamborra,et al.  Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history , 2014, 1404.1189.

[55]  D. Hooper,et al.  Dissecting the gamma-ray background in search of dark matter , 2013, 1312.0608.

[56]  G. Lamanna,et al.  DIFFUSE γ-RAY EMISSION FROM UNRESOLVED BL LAC OBJECTS , 2013, 1311.5708.

[57]  Tokyo,et al.  Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays , 2013, 1310.8500.

[58]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[59]  P. Schady,et al.  THE COSMIC EVOLUTION OF FERMI BL LACERTAE OBJECTS , 2013, 1310.0006.

[60]  M. Ahlers,et al.  Testing the hadronuclear origin of PeV neutrinos observed with IceCube , 2013, 1306.3417.

[61]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[62]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[63]  L. Latronico,et al.  DIFFUSE γ-RAY EMISSION FROM MISALIGNED ACTIVE GALACTIC NUCLEI , 2013, 1305.4200.

[64]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[65]  J. P. Harding,et al.  Models of the Contribution of Blazars to the Anisotropy of the Extragalactic Diffuse Gamma-ray Background , 2012, 1206.4734.

[66]  K. Ioka,et al.  Upper limit on the cosmological gamma-ray background , 2012, 1206.2923.

[67]  J. Chiang,et al.  GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE , 2012, The Astrophysical Journal.

[68]  A. Schukraft,et al.  An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts , 2012, Nature.

[69]  E. Komatsu,et al.  Joint anisotropy and source count constraints on the contribution of blazars to the diffuse gamma-ray background , 2012, 1202.5309.

[70]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[71]  R. Romani,et al.  THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS , 2011, 1110.3787.

[72]  Zunli Yuan,et al.  ON THE EVOLUTION OF THE CORES OF RADIO SOURCES AND THEIR EXTENDED RADIO EMISSION , 2011, 1109.4028.

[73]  Y. Inoue CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES’ CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION , 2011, 1103.3946.

[74]  E. Komatsu,et al.  Anisotropies in the diffuse gamma-ray background measured by the Fermi-LAT , 2010, 1202.2856.

[75]  Jean-Luc Starck,et al.  THE FERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND , 2010, 1003.0895.

[76]  Abraham Loeb,et al.  ON THE GeV AND TeV DETECTIONS OF THE STARBURST GALAXIES M82 AND NGC 253 , 2010, 1003.3257.

[77]  Todd A. Thompson,et al.  THE PHYSICS OF THE FAR-INFRARED–RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS , 2009, 0907.4161.

[78]  E. Ramirez-Ruiz,et al.  The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies , 2006, astro-ph/0609796.

[79]  Todd A. Thompson,et al.  The Starburst Contribution to the Extragalactic γ-Ray Background , 2006, astro-ph/0606665.

[80]  A. Loeb,et al.  The cumulative background of high energy neutrinos from starburst galaxies , 2006, astro-ph/0601695.

[81]  P. Reich,et al.  Radio-loud active galaxies in the northern ROSAT All-Sky Survey. IV. Properties of sources stronger than 100 mJy at 5 GHz , 2000 .

[82]  E. Feigelson,et al.  RADIO-LOUD ACTIVE GALAXIES IN THE NORTHERN ROSAT ALL-SKY SURVEY : II. MULTI-FREQUENCY PROPERTIES OF UNIDENTIFIED SOURCES , 1997 .

[83]  M. Pohl On the predictive power of the minimum energy condition. 2: Fractional calorimeter behaviour in the diffuse high energy gamma emission of spiral galaxies , 1994 .

[84]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[85]  E. Salpeter,et al.  1.4 GHz continuum sources in the Hercules cluster , 1984 .

[86]  P. Kruit Erratum; Further High-resolution Radio Continuum Observations of Bright Spiral Galaxies at 1415 MHz , 1973 .

[87]  P. V. D. Kruit,et al.  High-resolution radio continuum observations of bright spiral galaxies at 1415 MHz: a general discussion , 1973 .

[88]  P. Kruit High-resolution radio continuum observations of bright spiral galaxies in an optically complete sample at 1415 MHz , 1973 .

[89]  R. Mukherjee VERITAS detection of the radio galaxy NGC 1275 with elevated very-high-energy gamma-ray emission , 2017 .

[90]  Brian L. Ott,et al.  GEV OBSERVATIONS OF STAR-FORMING GALAXIES WITH FERMI LAT , 2012 .

[91]  V. M. Lyuty,et al.  Radio and optical evolution of the Seyfert galaxy NGC 1275. , 1995 .

[92]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .