Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6

[1]  E. Tajkhorshid,et al.  Microscopic Characterization of the Chloride Permeation Pathway in the Human Excitatory Amino Acid Transporter 1 (EAAT1). , 2022, ACS chemical neuroscience.

[2]  M. Seeger,et al.  Kinetic mechanism of Na+-coupled aspartate transport catalyzed by GltTk , 2021, Communications biology.

[3]  E. Tajkhorshid,et al.  Glutamate transporters have a chloride channel with two hydrophobic gates , 2021, Nature.

[4]  P. Kovermann,et al.  Functional consequences of SLC1A3 mutations associated with episodic ataxia 6 , 2020, Human mutation.

[5]  E. Tajkhorshid,et al.  Glutamate transporters contain a conserved chloride channel with two hydrophobic gates , 2020, bioRxiv.

[6]  D. Slotboom,et al.  Elevator-type mechanisms of membrane transport , 2020, Biochemical Society transactions.

[7]  K. Schilling,et al.  Increased glutamate transporter-associated anion currents cause glial apoptosis in episodic ataxia 6 , 2020, Brain communications.

[8]  V. Arkhipova,et al.  Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment , 2020, Nature Communications.

[9]  J. Holst,et al.  Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer , 2020, Neurochemical Research.

[10]  R. Vandenberg,et al.  Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer , 2020, Neurochemical Research.

[11]  O. Boudker,et al.  Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh , 2018, eLife.

[12]  R. Edwards,et al.  The dual role of chloride in synaptic vesicle glutamate transport , 2018, eLife.

[13]  M. H. Cheng,et al.  Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters , 2017, eLife.

[14]  Jon W. Johnson,et al.  Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance , 2017, Front. Mol. Neurosci..

[15]  K. Fendler,et al.  SSM-Based Electrophysiology for Transporter Research. , 2017, Methods in enzymology.

[16]  S. Marrink,et al.  Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk , 2016, Nature Communications.

[17]  Tiago A. Ferreira,et al.  Disruption of an EAAT-Mediated Chloride Channel in a Drosophila Model of Ataxia , 2016, The Journal of Neuroscience.

[18]  R. Vandenberg,et al.  The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter , 2015, Neurochemical Research.

[19]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[20]  D. Slotboom,et al.  Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh * , 2015, The Journal of Biological Chemistry.

[21]  L. Bunch,et al.  Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. , 2015, Current opinion in pharmacology.

[22]  B. L. de Groot,et al.  Mechanisms of Anion Conduction by Coupled Glutamate Transporters , 2015, Cell.

[23]  R. Vandenberg,et al.  The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation. , 2014, Biophysical journal.

[24]  N. Danbolt,et al.  Glutamate as a neurotransmitter in the healthy brain , 2014, Journal of Neural Transmission.

[25]  P. Kovermann,et al.  Mutating a Conserved Proline Residue within the Trimerization Domain Modifies Na+ Binding to Excitatory Amino Acid Transporters and Associated Conformational Changes* , 2013, The Journal of Biological Chemistry.

[26]  R. Vandenberg,et al.  Mechanisms of glutamate transport. , 2013, Physiological reviews.

[27]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[28]  A. Guskov,et al.  Crystal structure of a substrate-free aspartate transporter , 2013, Nature Structural &Molecular Biology.

[29]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[30]  N. Reyes,et al.  Binding thermodynamics of a glutamate transporter homologue , 2013, Nature Structural &Molecular Biology.

[31]  P. Kovermann,et al.  A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. , 2012, Brain : a journal of neurology.

[32]  O. Boudker,et al.  Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog , 2012, Nature Structural &Molecular Biology.

[33]  T. Rauen,et al.  The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. , 2011, Biophysical journal.

[34]  P. Kovermann,et al.  Substrate-dependent Gating of Anion Channels Associated with Excitatory Amino Acid Transporter 4* , 2011, The Journal of Biological Chemistry.

[35]  R. Krause,et al.  An automatic electrophysiological assay for the neuronal glutamate transporter mEAAC1 , 2009, Journal of Neuroscience Methods.

[36]  D. Attwell,et al.  A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: New insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2) , 2008, Neuroscience.

[37]  P. Schulz,et al.  SSM-based electrophysiology. , 2008, Methods.

[38]  R. Baloh,et al.  Primary episodic ataxias: diagnosis, pathogenesis and treatment. , 2007, Brain : a journal of neurology.

[39]  J. Mindell,et al.  The uncoupled chloride conductance of a bacterial glutamate transporter homolog , 2007, Nature Structural &Molecular Biology.

[40]  Eric Gouaux,et al.  Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter , 2007, Nature.

[41]  T. Rauen,et al.  The Glutamate Transporter Subtypes EAAT4 and EAATs 1-3 Transport Glutamate with Dramatically Different Kinetics and Voltage Dependence but Share a Common Uptake Mechanism , 2005, The Journal of general physiology.

[42]  R. Baloh,et al.  Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures , 2005, Neurology.

[43]  E. Gouaux,et al.  Structure of a glutamate transporter homologue from Pyrococcus horikoshii , 2004, Nature.

[44]  W. Stoffel,et al.  Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice. , 2004, Brain research. Molecular brain research.

[45]  R. Vandenberg,et al.  The Chloride Permeation Pathway of a Glutamate Transporter and Its Proximity to the Glutamate Translocation Pathway* , 2004, Journal of Biological Chemistry.

[46]  Anastassios V. Tzingounis,et al.  Comparison of Coupled and Uncoupled Currents during Glutamate Uptake by GLT-1 Transporters , 2002, The Journal of Neuroscience.

[47]  W. Konings,et al.  Glutamate transporters combine transporter- and channel-like features. , 2001, Trends in biochemical sciences.

[48]  P. Kugler,et al.  Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system , 1999, Glia.

[49]  M. Kavanaugh,et al.  Macroscopic and Microscopic Properties of a Cloned Glutamate Transporter/Chloride Channel , 1998, The Journal of Neuroscience.

[50]  F A Chaudhry,et al.  The Glutamate Transporter EAAT4 in Rat Cerebellar Purkinje Cells: A Glutamate-Gated Chloride Channel Concentrated near the Synapse in Parts of the Dendritic Membrane Facing Astroglia , 1998, The Journal of Neuroscience.

[51]  J. Rothstein,et al.  EAAC1, a high-affinity glutamate tranporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. , 1998, Cerebral cortex.

[52]  Masahiko Watanabe,et al.  Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice , 1998, The European journal of neuroscience.

[53]  Robert B. Thompson,et al.  The ₂-localization of () , 1998 .

[54]  Rothstein,et al.  EAAC 1 , a High-affinity Glutamate Transporter , is Localized to Astrocytes and Gabaergic Neurons besides Pyramidal Cells in the Rat Cerebral Cortex , 1998 .

[55]  M. Kavanaugh,et al.  Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[56]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[57]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[58]  M. Kavanaugh,et al.  Ion fluxes associated with excitatory amino acid transport , 1995, Neuron.

[59]  M. Kavanaugh,et al.  An excitatory amino-acid transporter with properties of a ligand-gated chloride channel , 1995, Nature.

[60]  A. Levey,et al.  Localization of neuronal and glial glutamate transporters , 1994, Neuron.

[61]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[62]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[63]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[64]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[65]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[66]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .