Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria

Thiamin and riboflavin are precursors of essential coenzymes-thiamin pyrophosphate (TPP) and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD), respectively. In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons. Here, we demonstrate that the feedback regulation of riboflavin and thiamin genes relies on a novel transcription attenuation mechanism. A unique feature of this mechanism is the formation of specific complexes between a conserved leader region of the cognate RNA and FMN or TPP. In each case, the complex allows the termination hairpin to form and interrupt transcription prematurely. Thus, sensing small molecules by nascent RNA controls transcription elongation of riboflavin and thiamin operons and possibly other bacterial operons as well.

[1]  Jan Barciszewski,et al.  RNA Biochemistry and Biotechnology , 1999 .

[2]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[3]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Henkin,et al.  tRNA-mediated transcription antitermination in vitro: Codon–anticodon pairing independent of the ribosome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  [Primary structure and functional activity of the Bacillus subtilis ribC gene]. , 1997, Molekuliarnaia biologiia.

[6]  R. Kadner,et al.  Adenosylcobalamin inhibits ribosome binding to btuB RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Henkin,et al.  The Staphylococcus aureus ileS gene, encoding isoleucyl-tRNA synthetase, is a member of the T-box family , 1997, Journal of bacteriology.

[8]  D. Downs,et al.  Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium , 1996, Journal of bacteriology.

[9]  M. Gelfand,et al.  A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. , 1999, Trends in genetics : TIG.

[10]  J P Sarsero,et al.  Some novel transcription attenuation mechanisms used by bacteria. , 1996, Biochimie.

[11]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[12]  R. A. Kreneva,et al.  Genetic mapping of regulatory mutations ofBacillus subtilis riboflavin operon , 1990, Molecular and General Genetics MGG.

[13]  Gary D. Stormo,et al.  Do mRNAs act as direct sensors of small molecules to control their expression? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Sean V. Taylor,et al.  Thiamin biosynthesis in prokaryotes , 1999, Archives of Microbiology.

[15]  D. Andersson,et al.  An adenosyl–cobalamin (coenzyme‐B12)‐repressed translational enhancer in the cob mRNA of Salmonella typhimurium , 2001, Molecular microbiology.

[16]  P. Stragier,et al.  Processing of a sporulation sigma factor in Bacillus subtilis: How morphological structure could control gene expression , 1988, Cell.

[17]  S. Ehrlich,et al.  tRNATrp as a key element of antitermination in the Lactococcus lactis trp operon , 1998, Molecular microbiology.

[18]  M. Mulks,et al.  Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes , 1995, Journal of bacteriology.

[19]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[20]  D. Leak,et al.  The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. , 1999, Microbiology.

[21]  R. Burgess,et al.  Rapid purification of His(6)-tagged Bacillus subtilis core RNA polymerase. , 2000, Protein expression and purification.

[22]  R. A. Kreneva,et al.  Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region , 1992, Molecular and General Genetics MGG.

[23]  I. Gusarov,et al.  [Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity]. , 1997, Molekuliarnaia biologiia.

[24]  T. Henkin,et al.  Specificity of tRNA-mRNA interactions in Bacillus subtilis tyrS antitermination , 1997, Journal of bacteriology.

[25]  A. van Loon,et al.  Regulation of Riboflavin Biosynthesis inBacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded byribC , 1998, Journal of bacteriology.

[26]  T. Henkin Transcription termination control in bacteria. , 2000, Current opinion in microbiology.

[27]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[28]  J. Miranda-Ríos,et al.  A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. A. Perumov,et al.  [Unusual structure of the regulatory region of the riboflavin biosynthesis operon in Bacillus subtilis]. , 1990, Molekuliarnaia biologiia.

[30]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[31]  J. Perkins,et al.  Biosynthesis of Riboflavin, Biotin, Folic Acid, and Cobalamin , 1993 .

[32]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[33]  C. Yanofsky,et al.  Transcription attenuation. , 1988, The Journal of biological chemistry.