Wear behavior of bainitic steels

Abstract A systematic study of the wear properties of a series of 0.5 wt.% Mo, 0.003 wt.% B bainitic steels has been made under dry sliding conditions. In contrast to most of the established wear models and experimental data, it was found that, for eight of the nine materials, the wear rate is not a linear function of load. The wear rate data have been analyzed with respect to chemical composition, hardness, monotonic-cyclic stress strain parameters, fatigue properties, Charpy impact data and microstructure. It is shown that the chromium content has the most significant influence on wear rate. Since these bainitic steels have inherently high impact resistance, which is improved with chromium additions, it is possible to achieve an attractive combination of properties with a steel containing 0.2 wt.% C, 2.0 wt.% Cr and 1.5 wt.% Mn. The wear resistance of the bainitic steels is compared with previous work on pearlitic steels tested under the same conditions. While the best pearlitic steels stand apart, it is seen that the best bainitic steel tested to date is better than some fully eutectoid steels containing 0.7 wt.% C.