Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices

Singlet exciton fission is an exciton multiplication process that occurs in certain organic materials, converting the energy of single highly-energetic photons into pairs of triplet excitons. This could be used to boost the conversion efficiency of crystalline silicon solar cells by creating photocurrent from energy that is usually lost to thermalisation. An appealing method of implementing singlet fission with crystalline silicon is to incorporate singlet fission media directly into a crystalline silicon device. To this end, we developed a solar cell that pairs the electron-selective contact of a high-efficiency silicon heterojunction cell with an organic singlet fission material, tetracene, and a PEDOT:PSS hole extraction layer. Tetracene and n-type crystalline silicon meet in a direct organic–inorganic heterojunction. In this concept the tetracene layer selectively absorbs blue-green light, generating triplet pairs that can dissociate or resonantly transfer at the organo-silicon interface, while lower-energy light is transmitted to the silicon absorber. UV photoemission measurements of the organic–inorganic interface showed an energy level alignment conducive to selective hole extraction from silicon by the organic layer. This was borne out by current–voltage measurements of devices subsequently produced. In these devices, the silicon substrate remained well-passivated beneath the tetracene thin film. Light absorption in the tetracene layer created a net reduction in current for the solar cell, but optical modelling of the external quantum efficiency spectrum suggested a small photocurrent contribution from the layer. This is a promising first result for the direct heterojunction approach to singlet fission on crystalline silicon.

[1]  Nasa,et al.  Solar Energy Systems , 2018, Energy for Sustainable Society.

[2]  T. Van Voorhis,et al.  Surface States Mediate Triplet Energy Transfer in Nanocrystal-Acene Composite Systems. , 2018, Journal of the American Chemical Society.

[3]  M. Beard,et al.  Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage. , 2018, Nano letters.

[4]  S. W. Tabernig,et al.  Enhancing silicon solar cells with singlet fission: the case for Förster resonant energy transfer using a quantum dot intermediate , 2018, 1801.09765.

[5]  A. Rao,et al.  Elucidation of Excitation Energy Dependent Correlated Triplet Pair Formation Pathways in an Endothermic Singlet Fission System. , 2018, Journal of the American Chemical Society.

[6]  R. Friend,et al.  Harnessing singlet exciton fission to break the Shockley–Queisser limit , 2017 .

[7]  M. Sfeir,et al.  Triplet Harvesting from Intramolecular Singlet Fission in Polytetracene , 2017, Advanced materials.

[8]  Timothy J. H. Hele,et al.  Tuning Singlet Fission in π-Bridge-π Chromophores. , 2017, Journal of the American Chemical Society.

[9]  Ryan D. Pensack,et al.  Solution-processable, crystalline material for quantitative singlet fission , 2017 .

[10]  Mark W. B. Wilson,et al.  Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion. , 2017, ACS nano.

[11]  Jinping Liu,et al.  Singlet Fission: Progress and Prospects in Solar Cells , 2017, Advanced materials.

[12]  C. Nuckolls,et al.  Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. , 2017, Nature chemistry.

[13]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[14]  F. Castellano,et al.  Delayed Molecular Triplet Generation from Energized Lead Sulfide Quantum Dots. , 2017, The journal of physical chemistry letters.

[15]  M. Zeman,et al.  GenPro4 Optical Model for Solar Cell Simulation and Its Application to Multijunction Solar Cells , 2017, IEEE Journal of Photovoltaics.

[16]  James R Engstrom,et al.  Who's on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: Tetracene on SiO2. , 2017, The Journal of chemical physics.

[17]  Matthew Y. Sfeir,et al.  Quintet multiexciton dynamics in singlet fission , 2016, Nature Physics.

[18]  R. Friend,et al.  Strongly exchange-coupled triplet pairs in an organic semiconductor , 2016, Nature Physics.

[19]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[20]  Luis M. Pazos-Outón,et al.  A Silicon–Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability , 2017, ACS energy letters.

[21]  K. Lips,et al.  Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells , 2017, Scientific Reports.

[22]  Ryan D. Pensack,et al.  Dynamic Exchange During Triplet Transport in Nanocrystalline TIPS-Pentacene Films. , 2016, Journal of the American Chemical Society.

[23]  B. Rech,et al.  Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells , 2016 .

[24]  Libai Huang,et al.  Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length , 2016, Advanced materials.

[25]  Gavin Conibeer,et al.  Morphological Evolution and Singlet Fission in Aqueous Suspensions of TIPS-Pentacene Nanoparticles , 2016 .

[26]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[27]  Justin C. Johnson,et al.  Polymorphism influences singlet fission rates in tetracene thin films† †Electronic supplementary information (ESI) available: Additional theoretical description, film preparation conditions, and optical characterization and kinetic modelling details. See DOI: 10.1039/c5sc03535j , 2015, Chemical science.

[28]  Vladimir Bulovic,et al.  Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals , 2015, Nature Photonics.

[29]  B. Rech,et al.  Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells , 2015 .

[30]  N. Koch,et al.  Energy-Level Engineering at ZnO/Oligophenylene Interfaces with Phosphonate-Based Self-Assembled Monolayers. , 2015, ACS applied materials & interfaces.

[31]  S Barlow,et al.  Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning , 2015, Nature Communications.

[32]  X. Zhu,et al.  Charge transfer-mediated singlet fission. , 2015, Annual review of physical chemistry.

[33]  B. Rech,et al.  Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, 0 < x < 2) , 2015 .

[34]  Marcus L. Böhm,et al.  Solution-processable singlet fission photovoltaic devices. , 2015, Nano letters.

[35]  N. Koch,et al.  Cascade energy transfer versus charge separation in ladder-type oligo(p-phenylene)/ZnO hybrid structures for light-emitting applications , 2014 .

[36]  Marcus L. Böhm,et al.  Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. , 2014, Nature materials.

[37]  S. Forrest,et al.  Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. I. Theory , 2014 .

[38]  S. Forrest,et al.  Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. II. Experiment , 2014 .

[39]  X. Zhu,et al.  How to Draw Energy Level Diagrams in Excitonic Solar Cells. , 2014, The journal of physical chemistry letters.

[40]  P. Naumov,et al.  Two Thin Film Polymorphs of the Singlet Fission Compound 1,3-Diphenylisobenzofuran , 2014 .

[41]  Jiu-Haw Lee,et al.  Dynamics of molecular excitons near a semiconductor surface studied by fluorescence quenching of polycrystalline tetracene on silicon , 2014 .

[42]  Shane R. Yost,et al.  Singlet fission efficiency in tetracene-based organic solar cells , 2014 .

[43]  Matthew J. Bruzek,et al.  Geminate and nongeminate recombination of triplet excitons formed by singlet fission. , 2014, Physical review letters.

[44]  T. Van Voorhis,et al.  Nanostructured Singlet Fission Photovoltaics Subject to Triplet‐Charge Annihilation , 2014, Advanced materials.

[45]  G. Conibeer,et al.  Semi-Empirical Limiting Efficiency of Singlet-Fission-Capable Polyacene/Inorganic Hybrid Solar Cells , 2014 .

[46]  N. Koch,et al.  Seleno groups control the energy-level alignment between conjugated organic molecules and metals. , 2014, The Journal of chemical physics.

[47]  M. Baldo,et al.  Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon , 2013 .

[48]  David Beljonne,et al.  Singlet exciton fission in solution. , 2013, Nature chemistry.

[49]  Eric T. Hoke,et al.  Re‐evaluating the Role of Sterics and Electronic Coupling in Determining the Open‐Circuit Voltage of Organic Solar Cells , 2013, Advanced materials.

[50]  C. Bardeen,et al.  Magnetic field effects and the role of spin states in singlet fission , 2013 .

[51]  R. Friend,et al.  Triplet diffusion in singlet exciton fission sensitized pentacene solar cells , 2013 .

[52]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[53]  T. Schmidt,et al.  The exciton dynamics in tetracene thin films. , 2013, Physical chemistry chemical physics : PCCP.

[54]  Priya J. Jadhav,et al.  Singlet exciton fission photovoltaics. , 2013, Accounts of chemical research.

[55]  Sebastian Reineke,et al.  External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell , 2013, Science.

[56]  Josef Michl,et al.  Recent advances in singlet fission. , 2013, Annual review of physical chemistry.

[57]  Priya J. Jadhav,et al.  Triplet Exciton Dissociation in Singlet Exciton Fission Photovoltaics , 2012, Advanced materials.

[58]  Marcus L. Böhm,et al.  Hybrid pentacene/a-silicon solar cells utilizing multiple carrier generation via singlet exciton fission , 2012 .

[59]  Manuel Ligges,et al.  The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. , 2012, Nature chemistry.

[60]  T. Schmidt,et al.  Thermodynamic Limit of Exciton Fission Solar Cell Efficiency , 2012 .

[61]  M. Baldo,et al.  Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer , 2012 .

[62]  Mark W. B. Wilson,et al.  In situ measurement of exciton energy in hybrid singlet-fission solar cells , 2012, Nature Communications.

[63]  Mark W. B. Wilson,et al.  Singlet exciton fission-sensitized infrared quantum dot solar cells. , 2012, Nano letters.

[64]  I. Biaggio,et al.  Triplet exciton dynamics in rubrene single crystals , 2011 .

[65]  L. Hirst,et al.  Fundamental losses in solar cells , 2009 .

[66]  Priya J. Jadhav,et al.  Singlet exciton fission in nanostructured organic solar cells. , 2011, Nano letters.

[67]  Akshay Rao,et al.  Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. , 2010, Journal of the American Chemical Society.

[68]  Byung-Ryool Hyun,et al.  Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. , 2010, Nano letters.

[69]  M. Ratner,et al.  Toward designed singlet fission: electronic states and photophysics of 1,3-diphenylisobenzofuran. , 2010, The journal of physical chemistry. A.

[70]  I. Campbell,et al.  Energy level alignments and photocurrents in crystalline Si/organic semiconductor heterojunction diodes , 2009 .

[71]  H. Mao,et al.  The chemisorption of tetracene on Si(100)-2x1 surface. , 2009, The Journal of chemical physics.

[72]  Priya J. Jadhav,et al.  High efficiency organic multilayer photodetectors based on singlet exciton fission , 2009 .

[73]  Jean-Michel Nunzi,et al.  Pentacene: PTCDI-C13H27 molecular blends efficiently harvest light for solar cell applications , 2006 .

[74]  N Koch,et al.  The effect of oxygen exposure on pentacene electronic structure , 2005, The European physical journal. E, Soft matter.

[75]  Claudia Ambrosch-Draxl,et al.  Oligoacene exciton binding energies: Their dependence on molecular size , 2005 .

[76]  Bernard Kippelen,et al.  Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions , 2004 .

[77]  Olle Inganäs,et al.  Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate) , 2002 .

[78]  L. Pettersson,et al.  Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal , 1998 .

[79]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[80]  D. L. Dexter Two ideas on energy transfer phenomena: Ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells , 1979 .

[81]  P. Avakian,et al.  Spectroscopic Approach to Energetics of Exciton Fission and Fusion in Tetracene Crystals , 1971 .

[82]  H. Inokuchi,et al.  Photoemission from Organic Crystal in Vacuum Ultraviolet Region. IV , 1970 .

[83]  W. G. Schneider,et al.  Laser Generation of Excitons and Fluorescence in Anthracene Crystals , 1965 .

[84]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .