Recent advances in adaptive radar detection

After briefly discussing the different statistical models (Gaussian and non-Gaussian) used to describe the radar data, different optimum and suboptimum detection methods will be introduced. Then, to deal with real applications, adaptive detection procedures will be presented with a particular focus on the clutter covariance matrix estimation, which is strongly related to the final detection performance. Finally, results on real data will be shown according to the presented detection schemes and some conclusions and perspectives will be drawn.

[1]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[2]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[3]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[4]  K. J. Sangston,et al.  Structures for radar detection in compound Gaussian clutter , 1999 .

[5]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[6]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[7]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[8]  Fulvio Gini,et al.  Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter , 2002, Signal Process..

[9]  A. Öztürk,et al.  Non-Gaussian random vector identification using spherically invariant random processes , 1993 .

[10]  E. Ollila,et al.  Influence functions for array covariance matrix estimators , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[11]  Karl Gerlach,et al.  Results on the Detection of Signals in Spherically Invariant Random Noise , 1989 .

[12]  Ami Wiesel,et al.  Geodesic Convexity and Covariance Estimation , 2012, IEEE Transactions on Signal Processing.

[13]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[14]  Joana Frontera-Pons,et al.  False-alarm regulation for target detection in hyperspectral imaging , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[15]  Esa Ollila,et al.  Distribution-free detection under complex elliptically symmetric clutter distribution , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[16]  Gabriel Vasile,et al.  Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Sze Kim Pang,et al.  Robust detection using the SIRV background modelling for hyperspectral imaging , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Philippe Forster,et al.  Theoretical analysis of an improved covariance matrix estimator in non-Gaussian noise [radar detection applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[19]  A. Farina,et al.  Radar detection in coherent Weibull clutter , 1987, IEEE Trans. Acoust. Speech Signal Process..

[20]  Dimitris Manolakis,et al.  Non Gaussian models for hyperspectral algorithm design and assessment , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[21]  Christ D. Richmond PDF's, confidence regions, and relevant statistics for a class of sample covariance-based array processors , 1996, IEEE Trans. Signal Process..

[22]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[23]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[24]  A. Farina,et al.  Selected list of references on radar signal processing , 2001 .

[25]  K. Ward Compound representation of high resolution sea clutter , 1980 .

[26]  Ami Wiesel,et al.  Unified Framework to Regularized Covariance Estimation in Scaled Gaussian Models , 2012, IEEE Transactions on Signal Processing.

[27]  Olivier Besson,et al.  Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions , 2014, J. Multivar. Anal..

[28]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[29]  Ami Wiesel,et al.  Convexity of the Maximum Likelihood Estimator for the Multivariate Generalized Gaussian Distribution , 2013 .

[30]  Matthew R. McKay,et al.  Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators , 2014, J. Multivar. Anal..

[31]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[32]  Jocelyn Chanussot,et al.  A class of robust estimates for detection in hyperspectral images using elliptical distributions background , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Yun Yang,et al.  A CFAR Adaptive Subspace Detector for First-Order or Second-Order Gaussian Signals Based on a Single Observation , 2011, IEEE Transactions on Signal Processing.

[34]  Simon Watts,et al.  Radar detection prediction in sea clutter using the compound K-distribution model , 1985 .

[35]  Visa Koivunen,et al.  Complex Elliptically Symmetric Random Variables—Generation, Characterization, and Circularity Tests , 2011, IEEE Transactions on Signal Processing.

[36]  Philippe Forster,et al.  Covariance Structure Maximum-Likelihood Estimates in Compound Gaussian Noise: Existence and Algorithm Analysis , 2008, IEEE Transactions on Signal Processing.

[37]  P.R. Chakravarthi,et al.  On determining the radar threshold for non-Gaussian processes from experimental data , 1996, IEEE Trans. Inf. Theory.

[38]  S. Watts,et al.  Radar Detection Prediction in K-Distributed Sea Clutter and Thermal Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Philippe Forster,et al.  Constant false alarm rate detection in Spherically Invariant Random Processes , 2004, 2004 12th European Signal Processing Conference.

[40]  Jocelyn Chanussot,et al.  Robust detection using M-estimators for hyperspectral imaging , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[41]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[42]  Marco Lops,et al.  Asymptotically optimum radar detection in compound-Gaussian clutter , 1995 .

[43]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .

[44]  Jean-Yves Tourneret,et al.  Parameter Estimation For Multivariate Generalized Gaussian Distributions , 2013, IEEE Transactions on Signal Processing.

[45]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Xiuyuan Cheng,et al.  Marchenko-Pastur Law for Tyler's and Maronna's M-estimators , 2014 .

[47]  Alexandre Renaux,et al.  Statistical analysis of the covariance matrix MLE in K-distributed clutter , 2010, Signal Process..

[48]  H. Vincent Poor,et al.  Complex Elliptically Symmetric Distributions: Survey, New Results and Applications , 2012, IEEE Transactions on Signal Processing.