Upper and lower bounds of op-code probabilities for Edgebreaker

This paper presents the probability distribution of the five op-codes (C, R, E, S and L) of Edgebreaker, which is one of the most popular connectivity compression methods for triangular meshes. The paper first makes a conjecture of Pr(C) > Pr(R) > Pr(E) > Pr(S) > Pr(L), where Pr is the probability of the appropriate code. After showing that the conjecture is not true, the theoretical limit values of the upper and lower bounds for the probability of each op-code are presented.

[1]  Gabriel Taubin,et al.  Geometry coding and VRML , 1998, Proc. IEEE.

[2]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[3]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.

[4]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[5]  Jarek Rossignac,et al.  Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker , 1999, Comput. Geom..

[6]  Martin Isenburg,et al.  Spirale Reversi: Reverse Decoding of the Edgebreaker Encoding , 1999, CCCG.

[7]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[8]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[9]  Deok-Soo Kim,et al.  Probability Distribution of Index Distances in Normal Index Array for Normal Vector Compression , 2003, International Conference on Computational Science.

[10]  Jarek Rossignac,et al.  An Edgebreaker-based efficient compression scheme for regular meshes , 2001, Comput. Geom..

[11]  Valerio Pascucci,et al.  Single resolution compression of arbitrary triangular meshes with properties , 1999, Comput. Geom..

[12]  Hwan-Gue Cho,et al.  An improved TIN compression using Delaunay triangulation , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[13]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[14]  Deok-Soo Kim,et al.  The Compression of the Normal Vectors of 3D Mesh Models Using Clustering , 2002, International Conference on Computational Science.