Impact of PVT variability on 20 nm FinFET standard cells

Abstract FinFET technology is pointed as the main candidate to replace CMOS bulk process in sub-22 nm circuits. Predictive technology and design exploration help to understand significant effects of variability sources and their impact on circuit performance and power consumption. This paper evaluates the impact of process, voltage and temperature (PVT) variations on timing and total power of predictive standard cells in 20 nm FinFETs technology node. Results emphasize that standard cell designs in future technologies have to take into account PVT variability in the early steps of the design.

[1]  Sani R. Nassif,et al.  Design for Manufacturability and Statistical Design - A Constructive Approach , 2007, Series on integrated circuits and systems.

[2]  Massimo Alioto,et al.  Analysis of layout density in FinFET standard cells and impact of fin technology , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[3]  Niraj K. Jha,et al.  Accurate Leakage Estimation for FinFET Standard Cells Using the Response Surface Methodology , 2012, 2012 25th International Conference on VLSI Design.

[4]  C. Fiegna,et al.  Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies , 2011, IEEE Transactions on Electron Devices.

[5]  Jens Lienig,et al.  Electromigration and its impact on physical design in future technologies , 2013, ISPD '13.

[6]  Christopher L. Henderson Failure analysis techniques for a 3D world , 2013, Microelectron. Reliab..

[7]  Rasit Onur Topaloglu Design with FinFETs: Design rules, patterns, and variability , 2013, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[8]  Cristina Meinhardt,et al.  Predictive evaluation of electrical characteristics of sub-22 nm FinFET technologies under device geometry variations , 2014, Microelectron. Reliab..

[9]  S. Natarajan,et al.  Impact of negative bias temperature instability on digital circuit reliability , 2002, 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No.02CH37320).

[10]  V. Kursun,et al.  Voltage optimization for temperature variation insensitive CMOS circuits , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[11]  Niraj K. Jha,et al.  FinPrin: FinFET Logic Circuit Analysis and Optimization Under PVT Variations , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[12]  Srikanth Krishnan,et al.  Impact of negative bias temperature instability on digital circuit reliability , 2005, Microelectron. Reliab..

[13]  Christian Russ ESD issues in advanced CMOS bulk and FinFET technologies: Processing, protection devices and circuit strategies , 2008, Microelectron. Reliab..

[14]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[15]  Yu Cao,et al.  Exploring sub-20nm FinFET design with Predictive Technology Models , 2012, DAC Design Automation Conference 2012.

[16]  Boyang Zhang FinFET standard cell optimization for performance and manufacturability , 2012 .

[17]  Ulf Schlichtmann,et al.  Predicting future product performance: Modeling and evaluation of standard cells in FinFET technologies , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[18]  A. Asenov,et al.  Statistical Threshold-Voltage Variability in Scaled Decananometer Bulk HKMG MOSFETs: A Full-Scale 3-D Simulation Scaling Study , 2011, IEEE Transactions on Electron Devices.

[19]  Cristina Meinhardt,et al.  Impact of gate workfunction fluctuation on FinFET standard cells , 2014, 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS).