Frequency-domain simulations of a negative-index material with embedded gain.

We solve the equations governing light propagation in a negative-index material with embedded nonlinearly saturable gain material using a frequency-domain model. We show that available gain materials can lead to complete loss compensation only if they are located in the regions where the field enhancement is maximal. We study the increased enhancement of the fields in the gain composite as well as in the metal inclusions and show analytically that the effective gain is determined by the average near-field enhancement.

[1]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[2]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[3]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[4]  John B. Pendry,et al.  Removal of absorption and increase in resolution in a near-field lens via optical gain , 2003 .

[5]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[6]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[7]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[8]  Vladimir M. Shalaev,et al.  Electrodynamics of metal-dielectric composites and electromagnetic crystals , 2000 .

[9]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[10]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[11]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[12]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[13]  D. Genov,et al.  Active Plasmonics: Surface Plasmon Interaction With Optical Emitters , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[15]  A. Kildishev,et al.  Negative-Index Metamaterials: Going Optical , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[17]  M. Wegener,et al.  Toy model for plasmonic metamaterial resonances coupled to two-level system gain. , 2008, Optics express.

[18]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[19]  Alan J. Heeger,et al.  Conjugated polymers as solid-state laser materials , 1997 .

[20]  V. Shalaev,et al.  Chapter 1 Negative refractive index metamaterials in optics , 2008 .

[21]  Andrey K. Sarychev,et al.  Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser , 2007 .

[22]  Pierre Berini,et al.  Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media , 2008 .

[23]  Uday K Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[24]  D. Chigrin,et al.  Numerical modelling of lasing in microstructures , 2007 .

[25]  Vladimir M. Shalaev,et al.  Metamaterials: Loss as a route to transparency , 2009 .

[26]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[27]  Richard W Ziolkowski,et al.  The design and simulated performance of a coated nano-particle laser. , 2007, Optics express.

[28]  M. Noginov,et al.  Elongation of surface plasmon polariton propagation length without gain. , 2008, Optics express.

[29]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[30]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[31]  Translation of nanoantenna hot spots by a metal-dielectric composite superlens , 2009, 0906.4088.

[32]  D. Smith,et al.  Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  V. Shalaev Optical negative-index metamaterials , 2007 .

[34]  Vladimir M. Shalaev,et al.  Optical Metamagnetism and Negative Index Metamaterials , 2008 .

[35]  M. McCall,et al.  Causality-based criteria for a negative refractive index must be used with care. , 2008, Physical review letters.

[36]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[37]  M. Wegener,et al.  Self-consistent calculation of metamaterials with gain , 2009, 0907.0888.

[38]  C. V. Shank,et al.  Physics of dye lasers , 1975 .

[39]  U. Chettiar,et al.  Yellow-light negative-index metamaterials. , 2009, Optics letters.

[40]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[41]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[42]  N. M. Lawandy,et al.  Localized surface plasmon singularities in amplifying media , 2004 .

[43]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[44]  Stefan A. Maier,et al.  Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides , 2006 .

[45]  Xiang Zhang,et al.  Observation of stimulated emission of surface plasmon polaritons. , 2008, Nano letters.

[46]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[47]  Pierre Berini,et al.  Modeling surface plasmon-polariton gain in planar metallic structures. , 2009, Optics express.

[48]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[49]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[50]  E. Desurvire Erbium-doped fiber amplifiers , 1994 .

[51]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[52]  V. Shalaev,et al.  Compensating losses in negative-index metamaterials by optical parametric amplification. , 2006, Optics letters.

[53]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[54]  Ivan Avrutsky,et al.  Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain , 2004 .

[55]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[56]  J. Pendry,et al.  Time Reversal and Negative Refraction , 2008, Science.

[57]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[58]  Thomas Koschny,et al.  Lasing in metamaterial nanostructures , 2009, 0907.1123.

[59]  W. Vos,et al.  Strong dependence of the optical emission rates of a two-level quantum emitter in any nanophotonic environment on the orientation of the transition dipole moment , 2009 .

[60]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[61]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[62]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.