A historical perspective of the development of the vertical-cavity surface-emitting laser
暂无分享,去创建一个
[1] F.J. Leonberger,et al. Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.
[2] Amnon Yariv,et al. Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers , 1988 .
[3] N. Hatori,et al. A low-threshold polarization-controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate , 1998, IEEE Photonics Technology Letters.
[4] L. Coldren,et al. Efficient, narrow-linewidth distributed-Bragg-reflector surface-emitting laser with periodic gain , 1989, IEEE Photonics Technology Letters.
[5] Larry A. Coldren,et al. Low threshold, high power, vertical-cavity surface-emitting lasers , 1991 .
[6] D. Deppe,et al. Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .
[7] A. R. Sugg,et al. Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .
[8] L. Coldren,et al. Electrically tunable Fabry–Perot mirror using multiple quantum well index modulation , 1988 .
[9] Larry A. Coldren,et al. Submilliamp threshold vertical‐cavity laser diodes , 1990 .
[10] D. Miller,et al. Optical bistability in semiconductors , 1981 .
[11] J. L. Jewell,et al. GaAs-AlAs Monolithic Microresonator Arrays , 1987, Other Conferences.
[12] Harvard Scott Hinton,et al. An ATM-based intelligent optical backplane using CMOS-SEED smart pixel arrays and free-space optical interconnect modules , 1996 .
[13] L. Coldren,et al. Low threshold planarized vertical-cavity surface-emitting lasers , 1990, IEEE Photonics Technology Letters.
[14] H. Uenohara,et al. An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability , 2000, IEEE Photonics Technology Letters.
[15] I. Melngailis. LONGITUDINAL INJECTION‐PLASMA LASER OF InSb , 1965 .
[16] Jack L. Jewell,et al. Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes , 1989 .
[17] William H. Steier,et al. Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers , 1994 .
[18] R. Henderson,et al. Strain and crystallographic orientation effects on interband optical matrix elements and band gaps of [11l ]‐oriented III‐V epilayers , 1995 .
[19] J. P. Harbison,et al. Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.
[20] A. Gossard,et al. GaAs-AlAs monolithic microresonater arrays , 1987 .
[21] V. Dneprovskii,et al. Optical bistability in semiconductors , 1985 .
[22] Yong-Hee Lee,et al. Vertical Cavity Single-Quantum-Well Laser , 1989, Photonic Switching.
[23] K. Iga,et al. GaInAsP/InP Surface Emitting Injection Lasers , 1979 .
[24] L. Coldren,et al. InGaAs vertical-cavity surface-emitting lasers , 1991 .
[25] Axel Scherer,et al. Lasing characteristics of GaAs microresonators , 1989 .
[26] K. Iga,et al. GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector , 1985 .
[27] Y. Okabe,et al. Bridge type Josephson junctions as high speed digital devices , 1984 .
[28] Andrew G. Glen,et al. APPL , 2001 .
[29] Kenichi Iga,et al. Room‐temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser , 1984 .
[30] E. Towe,et al. Polarization control of vertical-cavity surface-emitting lasers through use of an anisotropic gain distribution in [110]-oriented strained quantum-well structures , 1995 .