A compact factored representation of heterogeneous subsurface scattering

Many translucent materials exhibit heterogeneous subsurface scattering, which arises from complex internal structures. The acquisition and representation of these scattering functions is a complex problem that has been only partially addressed in previous techniques. Unlike homogeneous materials, the spatial component of heterogeneous subsurface scattering can vary arbitrarily over surface locations. Storing the spatial component without compression leads to impractically large datasets. In this paper, we address the problem of acquiring and compactly representing the spatial component of heterogeneous subsurface scattering functions. We propose a material model based on matrix factorization that can be mapped onto arbitrary geometry, and, due to its compact form, can be incorporated into most visualization systems with little overhead. We present results of several real-world datasets that are acquired using a projector and a digital camera.

[1]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[2]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[3]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[4]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[5]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[6]  Alan Edelman,et al.  Modeling and rendering of weathered stone , 1999, SIGGRAPH.

[7]  H. Shum,et al.  Shell texture functions , 2004, SIGGRAPH 2004.

[8]  Zhaoshui He,et al.  Extended SMART Algorithms for Non-negative Matrix Factorization , 2006, ICAISC.

[9]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Baining Guo,et al.  Synthesis and rendering of bidirectional texture functions on arbitrary surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[11]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[12]  Andreas Kolb,et al.  Homomorphic factorization of BRDF-based lighting computation , 2002, ACM Trans. Graph..

[13]  Hans-Peter Seidel,et al.  An empirical model for heterogeneous translucent objects , 2005, SIGGRAPH '05.

[14]  Pieter Peers,et al.  Relighting with 4D incident light fields , 2003, ACM Trans. Graph..

[15]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[16]  Hans-Peter Seidel,et al.  Realistic, hardware-accelerated shading and lighting , 1999, SIGGRAPH.

[17]  Andrew Gardner,et al.  Performance relighting and reflectance transformation with time-multiplexed illumination , 2005, ACM Trans. Graph..

[18]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, ACM Trans. Graph..

[19]  H. Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[20]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[21]  Gavin S. P. Miller,et al.  Lazy Decompression of Surface Light Fields for Precomputed Global Illumination , 1998, Rendering Techniques.

[22]  Hans-Peter Seidel,et al.  Interactive Rendering of Translucent Deformable Objects , 2003, Rendering Techniques.

[23]  Henrique S. Malvar,et al.  High-quality linear interpolation for demosaicing of Bayer-patterned color images , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[25]  Stephen Lin,et al.  Modeling and rendering of quasi-homogeneous materials , 2005, ACM Trans. Graph..

[26]  Hans-Peter Seidel,et al.  Interactive rendering of translucent objects , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[27]  Pieter Peers,et al.  Update rules for a weighted non-negative FH*G factorizationg , 2006 .

[28]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[29]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[30]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[31]  Ares Lagae,et al.  Interactive Rendering with Bidirectional Texture Functions , 2003, Comput. Graph. Forum.

[32]  Alain Fournier,et al.  Separating Reflection Functions for Linear Radiosity , 1995, Rendering Techniques.

[33]  Hans-Peter Seidel,et al.  Towards interactive bump mapping with anisotropic shift-variant BRDFs , 2000, Workshop on Graphics Hardware.

[34]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[35]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.