The gravitational wave signal from the Galactic disk population of binaries containing two compact objects.

We review the properties of Galactic binaries containing two compact objects, as derived by means of population synthesis. Using this information we calculate the gravitational wave signal of these binaries. At frequencies below f < 2 mHz the double white dwarf population forms an unresolved background for the low- frequency gravitational wave detector LISA. Above this limit some few thousand double white dwarfs and few tens of binaries containing neutron stars will be resolved. Of the resolved double white dwarfs500 have a total mass above the Chandrasekhar limit. About95 of these have a measurable frequency change allowing a determination of their chirp mass. We discuss the properties of the resolved systems.

[1]  G. Nelemans,et al.  Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars , 2001, astro-ph/0101123.

[2]  G. Nelemans,et al.  Population synthesis for double white dwarfs. I. Close detached systems. , 2000, astro-ph/0010457.

[3]  S. F. Portegies Zwart,et al.  Evolution of Neutron Star, Carbon-Oxygen White Dwarf Binaries , 1999, astro-ph/9911130.

[4]  C. Fassnacht,et al.  MICROLENSING 2000: A NEW ERA OF MICROLENSING ASTROPHYSICS , 2001 .

[5]  P. Bender,et al.  Gravitational Radiation from Helium Cataclysmics , 2000 .

[6]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[7]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[8]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[9]  V. Kalogera,et al.  An Upper Limit on the Coalescence Rate of Double Neutron-Star Binaries in the Galaxy , 1999, astro-ph/9907426.

[10]  B. Fields,et al.  Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter , 1999, astro-ph/9904291.

[11]  J. Hough,et al.  Laser frequency stabilisation for LISA: Experimental progress , 2000 .

[12]  Simon Portegies Zwart Lev Yungelson The possible companions of young radio pulsars , 1999, astro-ph/9904305.

[13]  Chris L. Fryer Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[14]  G. Chabrier,et al.  Is Galactic Dark Matter White? , 1999, astro-ph/9901145.

[15]  J. Cordes,et al.  Pulsar Spin Evolution, Kinematics, and the Birthrate of Neutron Star Binaries , 1998, astro-ph/9811323.

[16]  J. E. Pringle,et al.  Theory of black hole accretion disks , 1999 .

[17]  R. Webbink,et al.  Gravitational radiation from close double white dwarfs , 1998 .

[18]  W. Hiscock Low-Frequency Gravitational Waves from Black Hole MACHO Binaries , 1998, gr-qc/9809018.

[19]  Zhanwen Han The formation of double degenerates and related objects , 1998 .

[20]  K. Postnov,et al.  Galactic Binary Gravitational Wave Noise within the LISA Frequency Band , 1998 .

[21]  K. Thorne,et al.  Gravitational Waves from Coalescing Black Hole MACHO Binaries , 1997, astro-ph/9708060.

[22]  P. Sackett Does the Milky Way Have a Maximal Disk? , 1996, astro-ph/9608164.

[23]  N. E. White,et al.  The Galactic Distribution of Black Hole Candidates in Low-Mass X-Ray Binary Systems , 1996 .

[24]  Gravitational-wave sources , 1996 .

[25]  F. Adams,et al.  Implications of White Dwarf Galactic Halos , 1996, astro-ph/9602006.

[26]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[27]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[28]  D. Hils Gravitational radiation from dual neutron star elliptical binaries , 1991 .

[29]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[30]  N. C. Rana Chemical Evolution of the Galaxy , 1991 .

[31]  R. Webbink,et al.  Gravitational radiation from the Galaxy , 1990 .

[32]  J. Silk,et al.  The white dwarf luminosity function - A possible probe of the galactic halo , 1990 .

[33]  Christopher A. Tout,et al.  The distribution of visual binaries with two bright components , 1989 .

[34]  I. Iben,et al.  Degenerate dwarf binaries as promising, detectable sources of gravitational radiation , 1987 .

[35]  E. Heuvel STELLAR EVOLUTION AND THE FORMATION OF NEUTRON STARS IN BINARY SYSTEMS , 1987 .

[36]  R. Taam,et al.  Two types of binary radio pulsars with different evolutionary histories , 1984, Nature.

[37]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[38]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[39]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[40]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[41]  W. Press,et al.  Gravitational-wave astronomy , 1972 .

[42]  J. Weber Evidence for discovery of gravitational radiation , 1969 .

[43]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .