Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part I: Supercells

Abstract It is shown that total lightning mapping, along with radar and National Lightning Detection Network (NLDN) cloud-to-ground lightning data, can be used to diagnose the severity of a thunderstorm. Analysis of supercells, some of which were tornadic, on 13 October 2001 over Dallas–Fort Worth, Texas, shows that Lightning Detection and Ranging (LDAR II) lightning source heights (quartile, median, and 95th percentile heights) increased as the storms intensified. Most of the total (cloud to ground and intracloud) lightning occurred where reflectivity cores extended upward, within regions of strong reflectivity gradient rather than in reflectivity cores. A total lightning hole was associated with an intense, nontornadic supercell on 6 April 2003. None of the supercells on 13 October 2001 exhibited a lightning hole. During tornadogenesis, the radar and LDAR II data indicated updraft weakening. The height of the 30-dBZ radar top began to descend approximately 10 min (2 volume scans) before tornado touchdow...

[1]  D. MacGorman,et al.  Cloud-to-Ground Lightning in a Tornadic Storm on 8 May 1986 , 1991 .

[2]  Michael Davis,et al.  GPS‐based mapping system reveals lightning inside storms , 2000 .

[3]  D. E. Proctor,et al.  Regions where lightning flashes began , 1991 .

[4]  W. D. Rust,et al.  Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm , 1986 .

[5]  M. Murphy,et al.  2.3 AN ANALYSIS OF LIGHTNING HOLES IN A DFW SUPERCELL STORM USING TOTAL LIGHTNING AND RADAR INFORMATION , 2004 .

[6]  Tracy L. McCormick Three-Dimensional Radar and Total Lightning Characteristics of Mesoscale Convective Systems , 2003 .

[7]  R. Orville,et al.  Lightning Ground Flash Measurements over the Contiguous United States: 1995–97 , 1999 .

[8]  Paul Krehbiel,et al.  A GPS‐based three‐dimensional lightning mapping system: Initial observations in central New Mexico , 1999 .

[9]  Tsutomu Takahashi,et al.  Riming Electrification as a Charge Generation Mechanism in Thunderstorms , 1978 .

[10]  D. MacGorman,et al.  Evolution of Cloud-to-Ground Lightning Characteristics and Storm Structure in the Spearman, Texas, Tornadic Supercells of 31 May 1990 , 1998 .

[11]  Steven A. Rutledge,et al.  The 29 June 2000 Supercell Observed during STEPS. Part I: Kinematics and Microphysics , 2005 .

[12]  C. Saunders,et al.  The effects of high liquid water content on thunderstorm charging , 1992 .

[13]  V. Rakov,et al.  Lightning: Physics and Effects , 2007 .

[14]  V. Chandrasekar,et al.  The Severe Thunderstorm Electrification and Precipitation Study , 2001 .

[15]  Donald W. Burgess,et al.  Lightning Rates Relative to Tornadic Storm Evolution on 22 May 1981 , 1989 .

[16]  E. Williams,et al.  The Electrification of Severe Storms , 2001 .

[17]  M. Freeman,et al.  Dayside ionospheric convection changes in response to long‐period interplanetary Magnetic field oscillations: Determination of the ionospheric phase velocity , 1992 .

[18]  Joseph B. Klemp,et al.  Characteristics of Isolated Convective Storms , 1986 .

[19]  A. Witt,et al.  An Enhanced Hail Detection Algorithm for the WSR-88D , 1998 .

[20]  W. David Rust,et al.  Electrical structure in thunderstorm convective regions: 2. Isolated storms , 1998 .

[21]  W. D. Rust,et al.  Lightning location relative to storm structure in a supercell storm and a multicell storm , 1987 .

[22]  P. Krehbiel,et al.  LIGHTNING RELATIVE TO PRECIPITATION AND TORNADOES IN A SUPERCELL STORM , 2003 .

[23]  Lawrence D. Carey,et al.  Characteristics of cloud‐to‐ground lightning in severe and nonsevere storms over the central United States from 1989–1998 , 2003 .

[24]  Lawrence D. Carey,et al.  Lightning location relative to storm structure in a leading‐line, trailing‐stratiform mesoscale convective system , 2005 .

[25]  W. D. Rust,et al.  Preliminary Study of Lightning Location Relative to Storm Structure , 1982 .

[26]  Donald W. Burgess,et al.  The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D* , 1998 .

[27]  Steven J. Goodman,et al.  A Diagnostic Analysis of the Kennedy Space Center LDAR Network. 1; Data Characteristics , 2001 .

[28]  C. Doswell,et al.  Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis , 1979 .

[29]  Timothy J. Lang,et al.  Relationships between Convective Storm Kinematics, Precipitation, and Lightning , 2002 .

[30]  Arthur Witt,et al.  The Storm Cell Identification and Tracking Algorithm: An Enhanced WSR-88D Algorithm , 1998 .

[31]  Lawrence D. Carey,et al.  Electrical and multiparameter radar observations of a severe hailstorm , 1998 .

[32]  C. Saunders,et al.  A Review of Thunderstorm Electrification Processes , 1993 .

[33]  Louis J. Wicker,et al.  Characteristics of Cloud-to-Ground Lightning Associated with Violent Tornadoes , 1997 .

[34]  James E. Dye,et al.  Early electrification and precipitation development in a small, isolated Montana cumulonimbus , 1986 .

[35]  Hugh J. Christian,et al.  A computational study of the relationships linking lightning frequency and other thundercloud parameters , 1995 .

[36]  W. D. Rust,et al.  The electrical nature of storms , 1998 .

[37]  W. David Rust,et al.  Electrical structure in thunderstorm convective regions 3. Synthesis , 1998 .

[38]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[39]  Hartmut Höller,et al.  Lightning Evolution Related to Radar-Derived Microphysics in the 21 July 1998 EULINOX Supercell Storm , 2001 .

[40]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[41]  Earle R. Williams,et al.  The tripole structure of thunderstorms , 1989 .

[42]  E. Mansell,et al.  Simulated three‐dimensional branched lightning in a numerical thunderstorm model , 2002 .

[43]  W. D. Rust,et al.  Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems , 1998 .