Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity

[1]  Serdal Kirmizialtin,et al.  Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase , 2022, The Journal of biological chemistry.

[2]  J. Carazo,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2021, Communications Biology.

[3]  M. Lamers,et al.  Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path , 2020, Nature Communications.

[4]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[5]  K. Bui,et al.  Local computational methods to improve the interpretability and analysis of cryo-EM maps , 2020, Nature Communications.

[6]  David J. Fleet,et al.  Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction , 2019, Nature Methods.

[7]  Paul Emsley,et al.  Current developments in Coot for macromolecular model building of Electron Cryo‐microscopy and Crystallographic Data , 2019, Protein science : a publication of the Protein Society.

[8]  Jared M. Sagendorf,et al.  DNAproDB: an expanded database and web-based tool for structural analysis of DNA–protein complexes , 2019, Nucleic Acids Res..

[9]  Jasenko Zivanov,et al.  Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 , 2019, bioRxiv.

[10]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[11]  W. Chiu,et al.  Measurement of Atom Resolvability in CryoEM Maps with Q-scores , 2019, bioRxiv.

[12]  Dana M. Bis-Brewer,et al.  POLG mutations presenting as Charcot‐Marie‐Tooth disease , 2019, Journal of the peripheral nervous system : JPNS.

[13]  Tristan Ian Croll,et al.  ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps , 2018, Acta crystallographica. Section D, Structural biology.

[14]  H. Al‐Hashimi,et al.  Dynamic Basis for dG•dT misincorporation via tautomerization and ionization , 2018, Nature.

[15]  Martin Depken,et al.  Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity. , 2017, Biophysical journal.

[16]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[17]  M. Mancuso,et al.  Novel POLG mutations and variable clinical phenotypes in 13 Italian patients , 2017, Neurological Sciences.

[18]  Sjors H W Scheres,et al.  Self-correcting mismatches during high-fidelity DNA replication , 2017, Nature Structural &Molecular Biology.

[19]  Dong-Hua Chen,et al.  Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage. , 2016, Biophysical journal.

[20]  L. Partridge,et al.  Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies , 2015, Nature Communications.

[21]  Smita S. Patel,et al.  Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase , 2015, The EMBO journal.

[22]  K. Anderson,et al.  Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ , 2015, Proceedings of the National Academy of Sciences.

[23]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[24]  Timothy D. Craggs,et al.  Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion , 2013, Nature Communications.

[25]  D. Millar,et al.  Dynamics of site switching in DNA polymerase. , 2013, Journal of the American Chemical Society.

[26]  Jimin Wang,et al.  DNA mismatch synthesis complexes provide insights into base selectivity , 2013, Journal of the American Chemical Society.

[27]  D. Millar,et al.  Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. , 2012, Journal of the American Chemical Society.

[28]  F. Foury,et al.  Antimutator Alleles of Yeast DNA Polymerase Gamma Modulate the Balance between DNA Synthesis and Excision , 2011, PloS one.

[29]  H. Hellinga,et al.  Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis , 2011, Proceedings of the National Academy of Sciences.

[30]  L. Beese,et al.  The Structure of a High Fidelity DNA Polymerase Bound to a Mismatched Nucleotide Reveals an “Ajar” Intermediate Conformation in the Nucleotide Selection Mechanism* , 2011, The Journal of Biological Chemistry.

[31]  Y. Yin,et al.  Structural insight on processivity, human disease and antiviral drug toxicity. , 2011, Current opinion in structural biology.

[32]  T. Kunkel,et al.  Replication infidelity via a mismatch with Watson–Crick geometry , 2011, Proceedings of the National Academy of Sciences.

[33]  I. Molineux,et al.  A Single Mutation in Human Mitochondrial DNA Polymerase Pol γA Affects Both Polymerization and Proofreading Activities of Only the Holoenzyme* , 2010, The Journal of Biological Chemistry.

[34]  L. Reha-Krantz DNA polymerase proofreading: Multiple roles maintain genome stability. , 2010, Biochimica et biophysica acta.

[35]  I. Molineux,et al.  Each Monomer of the Dimeric Accessory Protein for Human Mitochondrial DNA Polymerase Has a Distinct Role in Conferring Processivity* , 2009, The Journal of Biological Chemistry.

[36]  Y. Yin,et al.  Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations , 2009, Cell.

[37]  R. Kasiviswanathan,et al.  Disease Mutations in the Human Mitochondrial DNA Polymerase Thumb Subdomain Impart Severe Defects in Mitochondrial DNA Replication* , 2009, The Journal of Biological Chemistry.

[38]  J. Ganesh,et al.  Molecular and clinical genetics of mitochondrial diseases due to POLG mutations , 2008, Human mutation.

[39]  Samuel H. Wilson,et al.  Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase β , 2008, Proceedings of the National Academy of Sciences.

[40]  Robert W. Taylor,et al.  Phenotypic spectrum associated with mutations of the mitochondrial polymerase γ gene. Commentary , 2006 .

[41]  Kathleen M. Randolph,et al.  A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. , 2006, Journal of molecular biology.

[42]  S. Dimauro,et al.  Early‐onset familial parkinsonism due to POLG mutations , 2006, Annals of neurology.

[43]  M. van Heel,et al.  Fourier shell correlation threshold criteria. , 2005, Journal of structural biology.

[44]  M. Zeviani,et al.  Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. , 2005, Brain : a journal of neurology.

[45]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[46]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[47]  Sean J. Johnson,et al.  Structures of Mismatch Replication Errors Observed in a DNA Polymerase , 2004, Cell.

[48]  V. Tiranti,et al.  Mutations of mitochondrial DNA polymerase γA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia , 2002, Annals of neurology.

[49]  K. Johnson,et al.  Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. , 2001, The Journal of biological chemistry.

[50]  K. Johnson,et al.  Exonuclease proofreading by human mitochondrial DNA polymerase. , 2001, The Journal of biological chemistry.

[51]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[52]  T. Petes,et al.  Identification of a mutant DNA polymerase delta in Saccharomyces cerevisiae with an antimutator phenotype for frameshift mutations. , 2001, Genetics.

[53]  H. Dressman,et al.  Interacting Fidelity Defects in the Replicative DNA Polymerase of Bacteriophage RB69* , 2001, The Journal of Biological Chemistry.

[54]  W. Copeland,et al.  The Mitochondrial p55 Accessory Subunit of Human DNA Polymerase γ Enhances DNA Binding, Promotes Processive DNA Synthesis, and Confers N-Ethylmaleimide Resistance* , 1999, The Journal of Biological Chemistry.

[55]  T. Steitz,et al.  Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex , 1999, Cell.

[56]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[57]  S. Benkovic,et al.  Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. , 1998, Biochemistry.

[58]  L. Reha-Krantz Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 "antimutator" DNA polymerases. , 1998, Genetics.

[59]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[60]  T. Steitz,et al.  Structure of DNA polymerase I Klenow fragment bound to duplex DNA , 1993, Science.

[61]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[62]  T. Steitz,et al.  Cocrystal structure of an editing complex of Klenow fragment with DNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Kunkel,et al.  The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. , 1986, The Journal of biological chemistry.

[64]  N. Seeman,et al.  Sequence-specific Recognition of Double Helical Nucleic Acids by Proteins (base Pairs/hydrogen Bonding/recognition Fidelity/ion Binding) , 2022 .

[65]  A. J. Berk,et al.  Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. , 1974, Journal of molecular biology.

[66]  H. Kasamatsu,et al.  Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[68]  B. Bornstein,et al.  Association of novel POLG mutations and multiple mitochondrial DNA deletions with variable clinical phenotypes in a Spanish population. , 2006, Archives of neurology.