Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis

Angiogenesis is a key process in the tumoral growth which allows the cancerous tissue to impact on its vasculature in order to improve the nutrient’s supply and the metastatic process. In this paper, we introduce a model for the density of metastasis which takes into account for this feature. It is a two-dimensional structured population equation with a vanishing velocity field and a source term on the boundary. We present here the mathematical analysis of the model, namely the well-posedness of the equation and the asymptotic behavior of the solutions, whose natural regularity led us to investigate some basic properties of the space \({W_{\rm div}(\Omega)=\left\{V\in L^1;\;{\rm div}(GV)\in L^1\right\}}\), where G is the velocity field of the equation.

[1]  Suman Kumar Tumuluri,et al.  Nonlinear Renewal Equations , 2008 .

[2]  Frédérique Clément,et al.  Multi-scale modeling of the follicle selection process in the ovary. , 2005, Mathematical biosciences.

[3]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[4]  C. Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .

[5]  Thierry Goudon,et al.  A model describing the growth and the size distribution of multiple metastatic tumors , 2009 .

[6]  Kendrick,et al.  Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[7]  N. Shigesada,et al.  A dynamical model for the growth and size distribution of multiple metastatic tumors. , 2000, Journal of theoretical biology.

[8]  Alfred J. Lotka,et al.  A Problem in Age-Distribution , 1911 .

[9]  Alberto Gandolfi,et al.  Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). , 2004, Mathematical biosciences.

[10]  B. Perthame,et al.  General relative entropy inequality: an illustration on growth models , 2005 .

[11]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[12]  B. Perthame Transport Equations in Biology , 2006 .

[13]  Didier Bresch,et al.  A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. , 2009, Journal of theoretical biology.

[14]  Quelques Résultats sur les Espaces de Sobolev , 2001 .

[15]  M. Jauffret Analysis of a Population Model Structured by the Cells Molecular Content , 2008, 0810.1174.

[16]  S. Tucker,et al.  A Nonlinear Model of Population Dynamics Containing an Arbitrary Number of Continuous Structure Variables , 1988 .

[17]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[18]  R. Dautray,et al.  Théorèmes de trace Lp pour des espaces de fonctions de la neutronique , 1984 .

[19]  Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance , 2003, 0904.2471.

[20]  J. Serrin,et al.  A General Chain Rule for Derivatives and the Change of Variables Formula for the Lebesgue Integral , 1969 .

[21]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[22]  Assia Benabdallah,et al.  Mathematical and numerical analysis for a model of growing metastatic tumors. , 2009, Mathematical biosciences.

[23]  H. T. Banks,et al.  Transformation semigroups andL1-approximation for size structured population models , 1989 .

[24]  B Ribba,et al.  A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. , 2006, Journal of theoretical biology.

[25]  P. Hahnfeldt,et al.  Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.

[26]  John M L Ebos,et al.  Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. , 2009, Cancer cell.