Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis
暂无分享,去创建一个
[1] Suman Kumar Tumuluri,et al. Nonlinear Renewal Equations , 2008 .
[2] Frédérique Clément,et al. Multi-scale modeling of the follicle selection process in the ovary. , 2005, Mathematical biosciences.
[3] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[4] C. Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .
[5] Thierry Goudon,et al. A model describing the growth and the size distribution of multiple metastatic tumors , 2009 .
[6] Kendrick,et al. Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.
[7] N. Shigesada,et al. A dynamical model for the growth and size distribution of multiple metastatic tumors. , 2000, Journal of theoretical biology.
[8] Alfred J. Lotka,et al. A Problem in Age-Distribution , 1911 .
[9] Alberto Gandolfi,et al. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). , 2004, Mathematical biosciences.
[10] B. Perthame,et al. General relative entropy inequality: an illustration on growth models , 2005 .
[11] G. Webb. Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .
[12] B. Perthame. Transport Equations in Biology , 2006 .
[13] Didier Bresch,et al. A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. , 2009, Journal of theoretical biology.
[14] Quelques Résultats sur les Espaces de Sobolev , 2001 .
[15] M. Jauffret. Analysis of a Population Model Structured by the Cells Molecular Content , 2008, 0810.1174.
[16] S. Tucker,et al. A Nonlinear Model of Population Dynamics Containing an Arbitrary Number of Continuous Structure Variables , 1988 .
[17] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[18] R. Dautray,et al. Théorèmes de trace Lp pour des espaces de fonctions de la neutronique , 1984 .
[19] Un modèle non-linéaire de prolifération cellulaire : extinction des cellules et invariance , 2003, 0904.2471.
[20] J. Serrin,et al. A General Chain Rule for Derivatives and the Change of Variables Formula for the Lebesgue Integral , 1969 .
[21] A. M'Kendrick. Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.
[22] Assia Benabdallah,et al. Mathematical and numerical analysis for a model of growing metastatic tumors. , 2009, Mathematical biosciences.
[23] H. T. Banks,et al. Transformation semigroups andL1-approximation for size structured population models , 1989 .
[24] B Ribba,et al. A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. , 2006, Journal of theoretical biology.
[25] P. Hahnfeldt,et al. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.
[26] John M L Ebos,et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. , 2009, Cancer cell.