Mechanisms of motor learning in the cerebellum 1 1 Published on the World Wide Web on 24 November 2000.

[1]  R. Dow,et al.  The Physiology and Pathology of the Cerebellum , 1958 .

[2]  Donald W. Cooper,et al.  The Physiology and Pathology of the Cerebellum , 1958, The Yale Journal of Biology and Medicine.

[3]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[4]  W. T. Thach Somatosensory receptive fields of single units in cat cerebellar cortex. , 1967, Journal of neurophysiology.

[5]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[6]  M Ito,et al.  Neurophysiological aspects of the cerebellar motor control system. , 1970, International journal of neurology.

[7]  J. Albus A Theory of Cerebellar Function , 1971 .

[8]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[9]  Masao Ito,et al.  Impulse discharge from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation , 1975, Brain Research.

[10]  James A. Mortimer,et al.  Cerebellar responses to teleceptive stimuli in alert monkeys , 1975, Brain Research.

[11]  O. Creutzfeldt,et al.  Afferent and intrinsic organization of laminated structures in the brain , 1976 .

[12]  O. Oscarsson,et al.  Spatial Distribution of Climbing and Mossy Fibre Inputs into the Cerebellar Cortex , 1976 .

[13]  J. Voogd,et al.  The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum , 1977, The Journal of comparative neurology.

[14]  W. T. Thach,et al.  Purkinje cell activity during motor learning , 1977, Brain Research.

[15]  P. Jastreboff,et al.  A neuronal correlate in rabbit's cerebellum to adaptive modification of the vestibulo-ocular reflex , 1978, Brain Research.

[16]  J. Voogd,et al.  The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum , 1979, The Journal of comparative neurology.

[17]  Masao Ito,et al.  Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex , 1982, Neuroscience Letters.

[18]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[19]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[20]  R. F. Thompson,et al.  Cerebellum: essential involvement in the classically conditioned eyelid response. , 1984, Science.

[21]  伊藤 正男 The cerebellum and neural control , 1984 .

[22]  M. Kano,et al.  Long-term depression of parallel fibre synapses following stimulation of climbing fibres , 1985, Brain Research.

[23]  A. L. Leiner,et al.  Does the cerebellum contribute to mental skills? , 1986, Behavioral neuroscience.

[24]  Richard F. Thompson The neurobiology of learning and memory. , 1986, Science.

[25]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[26]  R. Harvey,et al.  Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat , 1988, The Journal of comparative neurology.

[27]  Y. Prigent [Long term depression]. , 1989, Annales medico-psychologiques.

[28]  James C. Houk,et al.  An Adaptive Sensorimotor Network Inspired by the Anatomy and Physiology , 1989 .

[29]  G. Lynch,et al.  The neurobiology of learning and memory , 1989, Cognition.

[30]  M. Ito,et al.  Subdural application of hemoglobin to the cerebellum blocks vestibuloocular reflex adaptation. , 1991, Neuroreport.

[31]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[32]  J. Steinmetz,et al.  Inhibition of nitric oxide synthesis impairs two different forms of learning. , 1992, Neuroreport.

[33]  S. Rabacchi,et al.  Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. , 1992, Science.

[34]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[35]  R. Llinás,et al.  On the cerebellum and motor learning , 1993, Current Opinion in Neurobiology.

[36]  M. Castro-Alamancos,et al.  Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Masao Ito,et al.  Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells , 1994, Neuroscience Research.

[38]  G. Collingridge,et al.  Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1 , 1994, Nature.

[39]  S. Tonegawa,et al.  Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice , 1994, Cell.

[40]  T. Kawasaki,et al.  Climbing fiber responses of Purkinje cells to retinal image movement in cat cerebellar flocculus. , 1994, Journal of neurophysiology.

[41]  W. T. Thach,et al.  Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. , 1995, Journal of neurophysiology.

[42]  E De Schutter,et al.  Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. , 1995, Trends in neurosciences.

[43]  J. G. Mcelligott,et al.  Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning. , 1995, Journal of neurophysiology.

[44]  R. F. Thompson,et al.  Temporal specificity of long-term depression in parallel fiber--Purkinje synapses in rat cerebellar slice. , 1995, Learning & memory.

[45]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[46]  S. Tonegawa,et al.  Impaired synapse elimination during cerebellar development in PKCγ mutant mice , 1995, Cell.

[47]  Youngnam Kang,et al.  Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice , 1995, Cell.

[48]  D. Linden Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar Purkinje neuron in culture , 1995, Neuron.

[49]  Richard F. Thompson,et al.  Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCγ mutant mice , 1995, Cell.

[50]  Richard F. Thompson,et al.  Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice , 1996, Neuron.

[51]  N. Hartell,et al.  Strong Activation of Parallel Fibers Produces Localized Calcium Transients and a Form of LTD That Spreads to Distant Synapses , 1996, Neuron.

[52]  H. Jörntell,et al.  Relation Between Cutaneous Receptive Fields and Muscle Afferent Input to Climbing Fibres Projecting to the Cerebellar C3 Zone in the Cat , 1996, The European journal of neuroscience.

[53]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[54]  J. Roder,et al.  Impaired Cerebellar Synaptic Plasticity and Motor Performance in Mice Lacking the mGluR4 Subtype of Metabotropic Glutamate Receptor , 1996, The Journal of Neuroscience.

[55]  D. Yanagihara,et al.  Nitric oxide plays a key role in adaptive control of locomotion in cat. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Hiroshi Kadotani,et al.  Motor Discoordination Results from Combined Gene Disruption of the NMDA Receptor NR2A and NR2C Subunits, But Not from Single Disruption of the NR2A or NR2C Subunit , 1996, The Journal of Neuroscience.

[57]  D. Alkon,et al.  Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. , 1996, Journal of neurophysiology.

[58]  Richard F. Thompson,et al.  Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Susumu Tonegawa,et al.  Persistent Multiple Climbing Fiber Innervationof Cerebellar Purkinje Cellsin Mice Lacking mGluR1 , 1997, Neuron.

[60]  H. Daniel,et al.  Incomplete regression of multiple climbing fibre innervation of cerebellar Purkinje cells in mGluR1 mutant mice , 1997, Neuroreport.

[61]  H Asanuma,et al.  Neurobiological basis of motor learning in mammals. , 1997, Neuroreport.

[62]  R Llinás,et al.  The cerebellum, LTD, and memory: alternative views. , 1997, Learning & memory.

[63]  I. Torres-Aleman,et al.  Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells , 1997, International Journal of Developmental Neuroscience.

[64]  Chris I. De Zeeuw,et al.  Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex , 1998, Neuron.

[65]  D. Alkon,et al.  Intracellular Correlates of Acquisition and Long-Term Memory of Classical Conditioning in Purkinje Cell Dendrites in Slices of Rabbit Cerebellar Lobule HVI , 1998, The Journal of Neuroscience.

[66]  Hervé Daniel,et al.  Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited , 1998, Progress in Neurobiology.

[67]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.

[68]  M. Kano,et al.  Phospholipase cbeta4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[70]  J. Bloedel,et al.  Current concepts of climbing fiber function , 1998, The Anatomical record.

[71]  R. Nelson,et al.  Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice , 1999, Neuroscience.

[72]  J M Bower,et al.  Ascending granule cell axon: An important component of cerebellar cortical circuitry , 1999, The Journal of comparative neurology.

[73]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[74]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[75]  T. Hirano,et al.  Entire Course and Distinct Phases of Day-Lasting Depression of Miniature EPSC Amplitudes in Cultured Purkinje Neurons , 1999, The Journal of Neuroscience.

[76]  D Yanagihara,et al.  mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. , 2000, Science.

[77]  S. Mikawa,et al.  Disruption of AMPA receptor GluR2 clusters following long‐term depression induction in cerebellar Purkinje neurons , 2000, The EMBO journal.

[78]  S. Nagao,et al.  Subdural applications of NO scavenger or NO blocker to the cerebellum depress the adaptation of monkey post‐saccadic smooth pursuit eye movements , 2000, Neuroreport.

[79]  S. Itohara,et al.  Inhibition of nitric oxide synthesis and gene knockout of neuronal nitric oxide synthase impaired adaptation of mouse optokinetic response eye movements. , 2000, Learning & memory.

[80]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.