Single-wafer integrated semiconductor device processing

The authors present an overview of various single-wafer fabrication techniques for integrated processing of microelectronic devices. Numerous processing modules, sensors, and associated fabrication processes have been developed for advanced semiconductor device manufacturing. The combination of single-wafer processing, cluster tools, sensors, and advanced factory control/computer-integrated manufacturing techniques provides a capability for flexible fast-cycle-time device manufacturing. Specific developments and results are described in the areas of dry/vapor-phase surface cleaning, epitaxy, plasma processing, rapid thermal processing, and in situ sensors. An integrated sub-half micrometer CMOS technology based on these single-wafer fabrication methods including rapid thermal processing is also described. >

[1]  K. E. Davies,et al.  Hollow cathode etching and deposition , 1988 .

[2]  Joseph S. Logan,et al.  High rate radio frequency sputtering using in‐phase plasma confinement , 1990 .

[3]  Mehrdad M. Moslehi,et al.  Pyrometer modeling for rapid thermal processing , 1991, Other Conferences.

[4]  Tadashi Shibata,et al.  In situ-doped epitaxial silicon film growth at 250 degrees C by an ultra-clean low-energy bias sputtering , 1989, International Technical Digest on Electron Devices Meeting.

[5]  D. Bensahel,et al.  Selective epitaxial silicon growth in the 650–1100 °C range in a reduced pressure chemical vapor deposition reactor using dichlorosilane , 1989 .

[6]  K. Saraswat,et al.  Formation of MOS Gates by rapid thermal/microwave remote-plasma multiprocessing , 1987, IEEE Electron Device Letters.

[7]  Bernard S. Meyerson,et al.  Oxygen removal from Si via reaction with adsorbed Ge , 1987 .

[8]  L. Breaux,et al.  Homoepitaxial films grown on Si (100) at 150 °C by remote plasma‐enhanced chemical vapor deposition , 1989 .

[9]  Akihiro Miyauchi,et al.  Interface impurities of low‐temperature (900 °C) deposited Si epitaxial films prepared by HF treatments , 1990 .

[10]  J.P. Krusius,et al.  Rapid thermal processing of thin gate dielectrics. Oxidation of silicon , 1985, IEEE Electron Device Letters.

[11]  T. Hori,et al.  Excellent charge-trapping properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing , 1988, IEEE Electron Device Letters.

[12]  Haruo Okano,et al.  Etching Characteristics of n+ Poly-Si and Al Employing a Magnetron Plasma , 1984 .

[13]  Hiroshi Yamada,et al.  Low‐temperature surface cleaning method using low‐energy reactive ionized species , 1989 .

[14]  Masatoshi Oda,et al.  Reactive ion stream etching utilizing electron cyclotron resonance plasma , 1986 .

[15]  D. J. Thomson,et al.  Diagnostic techniques for plasma stability in electron cyclotron resonance plasma processing , 1990 .

[16]  Rafael Reif,et al.  Silicon selective epitaxial growth at 800 °C using SiH4/H2 assisted by H2/Ar plasma sputter , 1989 .

[17]  Takashi Ito,et al.  Invited Paper Photochemical Cleaning And Epitaxy Of Si , 1987, Other Conferences.

[18]  Masamichi Yamanishi,et al.  Dependence of GaAs etch rate on the angle of incidence of a hydrogen plasma beam excited by electron cyclotron resonance , 1990 .

[19]  R. Dutton,et al.  Effect of thermal nitridation processes on boron and phosphorus diffusion in 〈100〉 silicon , 1983 .

[20]  Bernard S. Meyerson,et al.  Nonequilibrium boron doping effects in low‐temperature epitaxial silicon films , 1987 .

[21]  Matthew Goeckner,et al.  Model of energetic electron transport in magnetron discharges , 1990 .

[22]  Tadahiro Ohmi,et al.  Anisotropic etching of n+ polycrystalline silicon with high selectivity using a chlorine and nitrogen plasma in an ultraclean electron cyclotron resonance etcher , 1990 .

[23]  Tsutomu Satō,et al.  Spectral Emissivity of Silicon , 1967 .

[24]  Judy L. Hoyt,et al.  Si/Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors fabricated by limited reaction processing , 1988, Technical Digest., International Electron Devices Meeting.

[25]  S. T. Liu,et al.  Limitations in low‐temperature silicon epitaxy due to water vapor and oxygen in the growth ambient , 1988 .

[26]  J. J. Wortman,et al.  Rapid Thermal Oxidation of Silicon , 1986 .

[27]  Kazunori Tsujimoto,et al.  Low‐temperature reactive ion etching and microwave plasma etching of silicon , 1988 .

[28]  Tatsuya Yamazaki,et al.  Continuous growth of heavily doped p+-n+ Si epitaxial layer using low-temperature photoepitaxy , 1989 .

[29]  Masami Sasaki,et al.  Dependence of ECR Plasma Etching Characteristics on Sub Magnetic Field and Substrate Position , 1990 .

[30]  J. Murota,et al.  Selective etching of native oxide by dry processing using ultra clean anhydrous hydrogen fluoride , 1988, Technical Digest., International Electron Devices Meeting.

[31]  Hiroshi Kawarada,et al.  Low-Temperature Synthesis of Diamond Films Using Magneto-Microwave Plasma CVD , 1990 .

[32]  J. Thornton Magnetron sputtering: basic physics and application to cylindrical magnetrons , 1978 .

[33]  O. A. Popov,et al.  Electron cyclotron resonance plasma stream source for plasma enhanced chemical vapor deposition , 1989 .

[34]  Y. Chabal,et al.  Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology , 1988 .

[35]  Dim-Lee Kwong,et al.  Metal‐oxide‐semiconductor characteristics of rapid thermal nitrided thin oxides , 1988 .

[36]  Jerzy Ruzyllo,et al.  Electrical Evaluation of Wet and Dry Cleaning Procedures for Silicon Device Fabrication , 1989 .

[37]  Mehrdad M. Moslehi,et al.  Compositional Studies of Thermally Nitrided Silicon Dioxide (Nitroxide) , 1985 .

[38]  K. Saraswat,et al.  Thermal nitridation of Si and SiO2for VLSI , 1985, IEEE Transactions on Electron Devices.

[39]  Hirotaka Toyoda,et al.  RF Plasma Production at Ultralow Pressures with Surface Magnetic Confinement , 1990 .

[40]  Akio Kitagawa,et al.  Enhanced Growth of Silicon Dioxide Films by Parallel-Resonant RF Plasmas , 1990 .

[41]  C. M. Horwitz,et al.  Diode and hollow cathode etching in CF4 , 1989 .

[42]  C. B. Cooper,et al.  Etching of SiO2 in an electron cyclotron resonance argon plasma , 1990 .

[43]  S. J. Pearton,et al.  Plasma etching of III–V semiconductors in CH4/H2/Ar electron cyclotron resonance discharges , 1990 .

[44]  J. Nulman,et al.  Pyrometric Emissivity Measurements and Compensation in an RTP Chamber , 1989 .

[45]  M. Delfino,et al.  Formation of TiN/TiSi2/p+-Si/n-Si by rapid thermal annealing (RTA) silicon implanted with boron through titanium , 1985, IEEE Electron Device Letters.

[46]  Dale E. Ibbotson,et al.  Application of a low‐pressure radio frequency discharge source to polysilicon gate etching , 1990 .

[47]  Tadahiro Ohmi,et al.  Future trends and applications of ultra-clean technology , 1989, International Technical Digest on Electron Devices Meeting.

[48]  Mehrdad M. Moslehi,et al.  Advanced epitaxial Si and Ge x Si 1− x multiprocessing for semiconductor device technologies , 1990 .

[49]  H. Higuchi,et al.  Effect of Si and SiO2 thermal nitridation on impurity diffusion and oxidation induced stacking fault size in Si , 1983 .

[50]  W. M. Holber,et al.  Ion energetics in electron cyclotron resonance discharges , 1990 .

[51]  Maki Suemitsu,et al.  High Quality Silicon Epitaxy at 500°C using Silane Gas-Source Molecular Beam Technique , 1989 .

[52]  S. Matsuo,et al.  Reactive Ion Beam Etching Using a Broad Beam ECR Ion Source , 1982 .

[53]  J. F. Gibbons,et al.  Reduced Process Sensitivity of Polysilicon Emitter Contacts for VLSI Bipolar Transistors , 1987, 1987 Symposium on VLSI Technology. Digest of Technical Papers.

[54]  A. A. Bright,et al.  Magnetron ion etching with CF4 based plasmas: Effects of magnetic field on plasma chemistry , 1989 .

[55]  T. Ohmi,et al.  Gas-phase selective etching of native oxide , 1990 .

[56]  Tung-Sheng Kuan,et al.  Low‐temperature selective epitaxial growth of silicon at atmospheric pressure , 1989 .

[57]  T. Deguchi,et al.  Low Temperature Silicon Epitaxy Using Si2 H 6 , 1987 .

[58]  Arthur Sherman,et al.  In situ removal of native oxide from silicon wafers , 1990 .

[59]  R. W. Boswell,et al.  Multipole confined diffusion plasma produced by 13.56 MHz electrodeless source , 1989 .

[60]  Tadahiro Ohmi,et al.  Control Factor of Native Oxide Growth on Silicon in Air or in Ultrapure Water , 1989 .

[61]  Mark J. Kushner,et al.  Magnetic field effects on cylindrical magnetron reactive ion etching of Si/SiO2 in CF4 and CF4/H2 plasmas , 1989 .

[62]  Kiyoshi Miyake Removal of a Thin SiO2 Layer by Low-Energy Hydrogen Ion Bombardment at Elevated Temperatures , 1989 .

[63]  R. Boswell,et al.  Large volume, high density rf inductively coupled plasma , 1987 .

[64]  G. P. Burns Low‐temperature native oxide removal from silicon using nitrogen trifluoride prior to low‐temperature silicon epitaxy , 1988 .

[65]  C. Horwitz,et al.  Silicon deposition in diode and hollow-cathode systems , 1989 .

[66]  Donnie K. Reinhard,et al.  Charged particle densities and energy distributions in a multipolar electron cyclotron resonant plasma etching source , 1990 .

[67]  Akira Yoshida,et al.  Plasmaless cleaning process of silicon surface using chlorine trifluoride , 1990 .

[68]  W. Kern The Evolution of Silicon Wafer Cleaning Technology , 1990 .

[69]  J. Asmussen Electron cyclotron resonance microwave discharges for etching and thin‐film deposition , 1989 .

[70]  Michael A. Lieberman,et al.  Spatial structure of a planar magnetron discharge , 1990 .

[71]  Antoine Durandet,et al.  Microwave multipolar plasmas excited by distributed electron cyclotron resonance: concept and performance , 1988 .

[72]  Tatsuya Yamazaki,et al.  Heavy Boron Doping in Low‐Temperature Si Photoepitaxy , 1990 .

[73]  John R. Vig UV/ozone cleaning of surfaces , 1976 .

[74]  Bernard S. Meyerson,et al.  Cooperative growth phenomena in silicon/germanium low-temperature epitaxy , 1988 .

[75]  T. Takahagi,et al.  The formation of hydrogen passivated silicon single‐crystal surfaces using ultraviolet cleaning and HF etching , 1988 .

[76]  Setsu Suzuki,et al.  Effect of Si‐Ge buffer layer for low‐temperature Si epitaxial growth on Si substrate by rf plasma chemical vapor deposition , 1983 .

[77]  Tadahiro Ohmi,et al.  Low-temperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment , 1989 .

[78]  J.D. Meindl,et al.  Interfacial and breakdown characteristics of MOS devices with rapidly grown ultrathin SiO2gate insulators , 1987, IEEE Transactions on Electron Devices.

[79]  Naoto Kondo,et al.  Si Surface Cleaning and Epitaxial Growth of GaAs on Si by Electron Cyclotron Resonance Plasma‐Excited Molecular‐Beam‐Epitaxy at Low Temperatures , 1989 .

[80]  Stephen A. Campbell,et al.  Very thin silicon epitaxial layers grown using rapid thermal vapor phase epitaxy , 1989 .

[81]  Shoichi Ono,et al.  Low-Temperature Surface Cleaning of Si and Successive Plasma-Assisted Epitaxial Growth of GaAs , 1987 .

[82]  L. Vallier,et al.  Distributed electron cyclotron resonance in silicon processing: Epitaxy and etching , 1990 .

[83]  Tsuneo Ajioka,et al.  Effects of surface hydrogen on the air oxidation at room temperature of HF‐treated Si (100) surfaces , 1990 .