Zeilberger's holonomic ansatz for Pfaffians
暂无分享,去创建一个
[1] Robert Donaghey,et al. Motzkin Numbers , 1977, J. Comb. Theory, Ser. A.
[2] Doron Zeilberger,et al. Proof of George Andrews’s and David Robbins’s q-TSPP conjecture , 2010, Proceedings of the National Academy of Sciences.
[3] Naiomi T. Cameron,et al. Hankel determinants of sums of consecutive Motzkin numbers , 2011 .
[4] Doron Zeilberger. The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations , 2007 .
[5] C. Krattenthaler. ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.
[6] Alain Lascoux,et al. Hankel Pfaffians, Discriminants and Kazhdan-Lusztig bases , 2011, 1103.4971.
[7] Christoph Koutschan,et al. Advanced Computer Algebra for Determinants , 2011, ArXiv.
[8] Christoph Koutschan,et al. A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..
[9] Christoph Koutschan,et al. Advanced applications of the holonomic systems approach , 2010, ACCA.
[10] Masato Wakayama,et al. Applications of minor summation formula III, Plücker relations, lattice paths and Pfaffian identities , 2006, J. Comb. Theory, Ser. A.
[11] Jiang Zeng,et al. A q-analogue of Catalan Hankel determinants , 2010, 1009.2004.
[12] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[13] Jiang Zeng,et al. Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants , 2010, J. Comb. Theory A.
[14] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..