In real time, everything requires monitoring and controlling, especially in case of the protecting food from getting spoiled. In this paper, an Internet of Thing (IoT) based framework for food monitoring is proposed to protect food from getting spoiled due to changes in the environmental conditions during storage. In the existing scenario the prediction has been done based on the recorded sensed data and detailed analysis have been done to identify the factors affecting the food to get spoiled. Automated controlling mechanism is proposed in this work for controlling the environmental parameters with adaptive Naive Byes prediction and IoT. In the proposed work, environmental parameters like temperature, humidity, moisture, light, etc., which affect on the quality of the nutritional values of food are considered which spoil the food, if they are not in the advisable range of their values. In this work online analysis would be done to predict the nutritional condition of the food to avoid the spoilage of the food. This will help to save food from getting spoiled and reduces the incidental losses in the business. All the sensed data will be stored on a cloud and the analysis would be performed for prediction of the environmental condition at the storage place to avoid food spoilage by changing to the suitable environmental condition, at the place. In the proposed work adaptive Naive Bayes method is used for prediction of environmental condition at the place where food is stored and the harmful changes are monitored and action will be taken to provide advisable condition at the stored location.
[1]
Ankita Gulati,et al.
iTrack: IoT framework for Smart Food Monitoring System
,
2016
.
[2]
Mr.A. Venkatesh,et al.
A Food Monitoring System Based on Bluetooth Low Energy and Internet of Things
,
2017
.
[3]
Pramod D. Ganjewar,et al.
Data reduction using incremental Naive Bayes Prediction (INBP) in WSN
,
2015,
2015 International Conference on Information Processing (ICIP).
[4]
Vladimir Vujovic,et al.
Application of internet of things in food packaging and transportation
,
2015
.
[5]
Hugo Thienpont,et al.
Photonics enhanced sensors for food monitoring: part 1
,
2016,
IEEE Instrumentation & Measurement Magazine.
[6]
Wolf-Joachim Fischer,et al.
Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food
,
2012,
Physiological measurement.
[7]
Young-Jae Ryoo,et al.
Development of remote monitoring system for cold-storage
,
2004,
30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.