Méthodes d'analyse du mouvement brownien fractionnaire : théorie et résultats comparatifs Analysis methods for fractional brownian motion: theory and comparative results

and key words In this paper, several analysis methods for fractional Brownian motion are studied using reference test signals generated by the Cholesky procedure. Several sets of 100 signals having sample size ranging from N =3 2to 1024 by power of 2 are generated for H = 0.1 to 0.9 by steps of 0.1. Analysis techniques of the H parameter among the most well known in signal processing are studied. They are grouped in four categories: frequency based methods, geometrical methods, time methods, and multi-resolution methods. Quality of these estimators is assessed in terms of bias and variance. The variance is compared to the Cramer-Rao lower bound (CRLB). Statistical tests show that only the maximum likelihood estimator (MLE) is efficient (unbiased and reaches the CRLB) for every H and N tes- ted. This experimental result about the efficiency of MLE extends that demonstrated by Dahlhaus only in the

[1]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[2]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[3]  P. Whittle,et al.  Estimation and information in stationary time series , 1953 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[6]  P. Abry,et al.  The wavelet based synthesis for fractional Brownian motion , 1996 .

[7]  C. Granger The typical spectral shape of an economic variable , 1966 .

[8]  Mohamed A. Deriche,et al.  Signal modeling with filtered discrete fractional noise processes , 1993, IEEE Trans. Signal Process..

[9]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[10]  P. Flandrin,et al.  Fractal dimension estimators for fractional Brownian motions , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[11]  F. Sellan,et al.  Synthèse de mouvements browniens fractionnaires à l'aide de la transformation par ondelettes , 1995 .

[12]  T. Higuchi Approach to an irregular time series on the basis of the fractal theory , 1988 .

[13]  R. Schmukler,et al.  Measurement Of Bone Structure By Use Of Fractal Dimension , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[15]  S. Kay,et al.  Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.

[16]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Petros Maragos,et al.  Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization , 1993, IEEE Trans. Signal Process..

[18]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[19]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[20]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[21]  2 - Estimation de la qualité des méthodes de synthèse du mouvement Brownien fractionnaire , 1996 .

[22]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[23]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[24]  R. Harba,et al.  Surface topography and mechanical properties of smectite films , 1997 .

[25]  R. Kumaresan,et al.  Isotropic two-dimensional Fractional Brownian Motion and its application in Ultrasonic analysis , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[26]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[27]  M. Coster,et al.  Précis d'analyse d'images , 1989 .

[28]  C. Roques-Carmes,et al.  Evaluation de la dimension fractale d'un graphe , 1988 .

[29]  Ramdas Kumaresan,et al.  Estimation of the fractal dimension of a stochastic fractal from noise-corrupted data , 1992 .

[30]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[31]  L. Burlaga,et al.  Fractal structure of the interplanetary magnetic field , 1986 .

[32]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[33]  J. Bardet Un test d'auto-similarit pour les processus gaussiens accroissements stationnaires , 1999 .

[34]  A. I. McLeod,et al.  Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst Phenomenon , 1978 .

[35]  H. Vincent Poor,et al.  Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.

[36]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[37]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[38]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[40]  C.-C. Jay Kuo,et al.  Extending self-similarity for fractional Brownian motion , 1994, IEEE Trans. Signal Process..

[41]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[42]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[43]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[44]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..