Méthodes d'analyse du mouvement brownien fractionnaire : théorie et résultats comparatifs Analysis methods for fractional brownian motion: theory and comparative results
暂无分享,去创建一个
[1] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[2] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[3] P. Whittle,et al. Estimation and information in stationary time series , 1953 .
[4] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[5] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.
[6] P. Abry,et al. The wavelet based synthesis for fractional Brownian motion , 1996 .
[7] C. Granger. The typical spectral shape of an economic variable , 1966 .
[8] Mohamed A. Deriche,et al. Signal modeling with filtered discrete fractional noise processes , 1993, IEEE Trans. Signal Process..
[9] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.
[10] P. Flandrin,et al. Fractal dimension estimators for fractional Brownian motions , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[11] F. Sellan,et al. Synthèse de mouvements browniens fractionnaires à l'aide de la transformation par ondelettes , 1995 .
[12] T. Higuchi. Approach to an irregular time series on the basis of the fractal theory , 1988 .
[13] R. Schmukler,et al. Measurement Of Bone Structure By Use Of Fractal Dimension , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
[14] W. Willinger,et al. ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .
[15] S. Kay,et al. Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.
[16] Alex Pentland,et al. Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] Petros Maragos,et al. Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization , 1993, IEEE Trans. Signal Process..
[18] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[19] Steven Kay,et al. Modern Spectral Estimation: Theory and Application , 1988 .
[20] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[21] 2 - Estimation de la qualité des méthodes de synthèse du mouvement Brownien fractionnaire , 1996 .
[22] Y. Meyer,et al. Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .
[23] Benoit B. Mandelbrot,et al. Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.
[24] R. Harba,et al. Surface topography and mechanical properties of smectite films , 1997 .
[25] R. Kumaresan,et al. Isotropic two-dimensional Fractional Brownian Motion and its application in Ultrasonic analysis , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
[26] Clive W. J. Granger,et al. An introduction to long-memory time series models and fractional differencing , 2001 .
[27] M. Coster,et al. Précis d'analyse d'images , 1989 .
[28] C. Roques-Carmes,et al. Evaluation de la dimension fractale d'un graphe , 1988 .
[29] Ramdas Kumaresan,et al. Estimation of the fractal dimension of a stochastic fractal from noise-corrupted data , 1992 .
[30] J. Bendat,et al. Random Data: Analysis and Measurement Procedures , 1971 .
[31] L. Burlaga,et al. Fractal structure of the interplanetary magnetic field , 1986 .
[32] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[33] J. Bardet. Un test d'auto-similarit pour les processus gaussiens accroissements stationnaires , 1999 .
[34] A. I. McLeod,et al. Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst Phenomenon , 1978 .
[35] H. Vincent Poor,et al. Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.
[36] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[37] Patrick Flandrin,et al. Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[38] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[39] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[40] C.-C. Jay Kuo,et al. Extending self-similarity for fractional Brownian motion , 1994, IEEE Trans. Signal Process..
[41] Patrick Flandrin,et al. On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.
[42] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[43] Patrice Abry,et al. A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.
[44] Gregory W. Wornell,et al. Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..