A Review on Finite Element Analysis Approaches in Durability Assessment of Automotive Components

This research describes the majority of interesting findings in the use of the Finite Element Analysis (FEA) based fatigue for automotive components in a form of review write-up. Thus, the theoretical background related to the fatigue life prediction using FEA is presented which is the main subject of this research. The challenge for FEA-based software developers is to deliver reliable fatigue-analysis tools because over designing components is no longer a viable option. Combination between a fatigue model based on the crack initiation, the crack growth and the crack closures are performed with consideration of cycle sequence effect together with finite element results, which lead to the prediction of fatigue life under spectrum or service loadings.

[1]  A. Plumtree,et al.  Cyclic Deformation and Life Prediction Using Damage Mechanics , 1990 .

[2]  P. C. Brooks,et al.  Review of life assessment techniques applied to dynamically loaded automotive components , 2002 .

[3]  Yves Nadot,et al.  Fatigue failure of suspension arm: experimental analysis and multiaxial criterion , 2004 .

[4]  J. M. Alegre,et al.  Fatigue analysis of an electric windows mechanism subjected to operation cycles , 2006 .

[5]  G. R. Halford,et al.  Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage , 1981 .

[6]  Ali Fatemi,et al.  Experimental durability assessment and life prediction of vehicle suspension components: A case study of steering knuckles , 2006 .

[7]  Tim Topper,et al.  Effective strain–fatigue life data for variable amplitude fatigue , 1997 .

[8]  Tim Topper,et al.  THE EFFECTIVE STRESS RANGE AS A FATIGUE DAMAGE PARAMETER , 1992 .

[9]  A. P. Zielinski,et al.  Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion , 2006 .

[10]  Farid Taheri,et al.  Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings , 2003 .

[11]  Tim Topper,et al.  The effective stress range as a mean stress parameter , 1992 .

[12]  Seong-Gu Hong,et al.  Low cycle fatigue testing of 429EM stainless steel pipe , 2003 .

[13]  Xu Chen,et al.  Fatigue life of 63Sn–37Pb solder related to load drop under uniaxial and torsional loading , 2006 .

[14]  K. K. Vaze,et al.  Uniaxial and biaxial ratchetting study of SA333 Gr.6 steel at room temperature , 2003 .

[15]  C.-C. Chu,et al.  Multiaxial fatigue life prediction method in the ground vehicle industry , 1997 .

[16]  Jeong Kim,et al.  Preform design in hydroforming of automobile lower arm by FEM , 2003 .

[17]  Xianjie Yang LOW CYCLE FATIGUE AND CYCLIC STRESS RATCHETING FAILURE BEHAVIOR OF CARBON STEEL 45 UNDER UNIAXIAL CYCLIC LOADING , 2005 .

[18]  P. J. Hurley,et al.  Prediction of fatigue initiation lives in notched Ti 6246 specimens , 2008 .

[19]  D. Hrovat,et al.  Survey of Advanced Suspension Developments and Related Optimal Control Applications, , 1997, Autom..

[20]  C. R. Williams,et al.  A practical method for statistical analysis of strain–life fatigue data , 2003 .

[21]  Darrell F. Socie,et al.  Simple rainflow counting algorithms , 1982 .

[22]  Cetin Morris Sonsino,et al.  Betriebsfestigkeit in Germany — an overview ☆ , 2002 .

[23]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .

[24]  C.-C. Chu,et al.  Fatigue analysis and the local stress–strain approach in complex vehicular structures , 1997 .

[25]  M. Yip,et al.  Prediction of low-cycle contact fatigue life of sleeve–pin–shaft connections under axial and torsional cyclic loading , 2007 .

[26]  S. Suresh Fatigue of Materials: Introduction and overview , 1998 .

[27]  A. Conle,et al.  Overstrain effects during variable amplitude service history testing , 1980 .

[28]  Weixing Yao,et al.  A nonlinear damage cumulative model for uniaxial fatigue , 1999 .

[30]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[31]  P. C. Brooks,et al.  The development of an optimisation algorithm based on fatigue life , 2003 .

[32]  William W. Wu,et al.  A modified model for the estimation of fatigue life derived from random vibration theory 1 A small p , 1999 .

[33]  Walter Schütz,et al.  A history of fatigue , 1996 .

[34]  S. Hasegawa,et al.  Evaluation of low cycle fatigue life in AZ31 magnesium alloy , 2007 .

[35]  Ray W. Clough,et al.  Early history of the finite element method from the view point of a pioneer , 2004 .

[36]  Jonas W. Ringsberg,et al.  Rolling contact fatigue analysis of rails inculding numerical simulations of the rail manufacturing process and repeated wheel-rail contact loads , 2003 .