Nanotip array photoimprint lithography

Nanotip arrays have been fabricated on the distal faces of coherent fiber-optic bundles. A nanotip array comprised ∼6000 individual optical fibers that were etched chemically. Individual tips were ∼4 μm long with radii of curvatures as small as 15 nm. Nanotip arrays served as a template for a novel polymeric patterning process called photoimprint lithography. This lithographic method generated an array of polysiloxane microwells on glass surfaces. Individual wells had ∼1 μm diameters and were dispersed regularly ∼4 μm apart (center-to-center). Nanotip arrays were also used as templates for an imprint patterning process. This lithographic method generated an array of polystyrene microwells on glass surfaces dispersed regularly ∼4 μm apart with ∼1 μm diameters and ∼4 μm well depths. Both lithographic methodologies provide a simple, technically-expedient method to pattern surfaces with arrays of picoliter-volume wells suitable for microanalytical device utilization.

[1]  Nanometer‐scale recording, erasing, and reproducing using scanning tunneling microscopy , 1995 .

[2]  Christopher C. Davis,et al.  Near‐field direct‐write ultraviolet lithography and shear force microscopic studies of the lithographic process , 1995 .

[3]  Calvin F. Quate,et al.  NANOMETER SCALE LITHOGRAPHY AT HIGH SCANNING SPEEDS WITH THE ATOMIC FORCE MICROSCOPE USING SPIN ON GLASS , 1995 .

[4]  Andrew D. Ellington,et al.  Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue , 1998 .

[5]  Andreas Manz,et al.  Rapid separation of fluorescein derivatives using a micromachined capillary eletrophoresis system , 1993 .

[6]  P. Rai-Choudhury Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1: Microlithography , 1997 .

[7]  J. A. Jankowski,et al.  Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells. , 1991, Analytical chemistry.

[8]  D R Walt,et al.  Fast temporal response fiber-optic chemical sensors based on the photodeposition of micrometer-scale polymer arrays. , 1997, Analytical chemistry.

[9]  D R Walt,et al.  Combined imaging and chemical sensing using a single optical imaging fiber. , 1995, Analytical chemistry.

[10]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[11]  Daniel Rugar,et al.  Thermomechanical data storage using a fiber optic stylus , 1994 .

[12]  A. W. Czarnik,et al.  Peer Reviewed: Combinatorial Chemistry , 1998 .

[13]  A. Bard,et al.  A New Approach to the High Resolution Electrodeposition of Metals via the Feedback Mode of the Scanning Electrochemical Microscope , 1990 .

[14]  Calvin F. Quate,et al.  Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation , 1995 .

[15]  David R. Walt,et al.  Simultaneous monitoring of pH, CO2 and O2 using an optical imaging fiber , 1997 .

[16]  D R Walt,et al.  Randomly ordered addressable high-density optical sensor arrays. , 1998, Analytical chemistry.

[17]  Robert Schlögl,et al.  Nanometer lithography with the scanning tunneling microscope , 1985 .

[18]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[19]  D R Walt,et al.  In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber. , 1997, Analytical chemistry.

[20]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[21]  J. Mlynek,et al.  Surface modification in the optical near field , 1996 .

[22]  D R Walt,et al.  Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. , 1995, Analytical chemistry.

[23]  G. Whitesides,et al.  Using microcontact printing to generate amplitude photomasks on the surfaces of optical fibers: A method for producing in-fiber gratings , 1997 .

[24]  Weihong Tan,et al.  Near-field fiber optic chemical sensors and biological applications , 1994, Other Conferences.

[25]  A. Ewing,et al.  Characterization of Electrochemical Responses in Picoliter Volumes , 1998 .

[26]  R. J. Tonucci,et al.  Nanochannel Array Glass , 1992, Science.

[27]  E. Yeung,et al.  Monitoring the Reactions of Single Enzyme Molecules and Single Metal Ions , 1997 .

[28]  Yiannos Manoli,et al.  Chemical and biochemical sensor array for two-dimensional imaging of anlyte distributions , 1994 .

[29]  Joseph Wang,et al.  Enzyme Microelectrode Array Strips for Glucose and Lactate , 1994 .

[30]  H. Sugimura,et al.  Direct-mode scanning electrochemical microscopy with three electrodes: application to fluorescent micropattern formation , 1993 .

[31]  J. Meiners,et al.  Near field microscopy and lithography with uncoated fiber tips: a comparison , 1995 .

[32]  D R Walt,et al.  Fabrication of patterned sensor arrays with aryl azides on a polymer-coated imaging optical fiber bundle. , 1994, Analytical chemistry.

[33]  D R Walt,et al.  Photodeposition of micrometer-scale polymer patterns on optical imaging fibers , 1995, Science.

[34]  G. Mourou,et al.  Reduction of multi-photon ionization in dielectrics due to collisions , 1996, Ultrafast Phenomena.

[35]  Andreas Manz,et al.  High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device , 1994 .

[36]  G. Whitesides,et al.  Soft lithographic methods for nano-fabrication , 1997 .

[37]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[38]  A. Woolley,et al.  High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. , 1997, Analytical chemistry.

[39]  E. Fabrizio,et al.  Nanometer biodevice fabrication by electron beam lithography , 1997 .

[40]  Gang-yu Liu,et al.  Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly , 1997 .

[41]  M. Kleiber,et al.  Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography , 1996 .

[42]  M. Mogi,et al.  Development Of Super High Density Packed Image Guide , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[43]  George M. Whitesides,et al.  Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers , 1997 .

[44]  Joel R. Wendt,et al.  Near-field optical microscopy nanoarray , 1997, Photonics West.

[45]  M. Madou Fundamentals of microfabrication , 1997 .

[46]  D R Walt,et al.  Improved fiber-optic chemical sensor for penicillin. , 1995, Analytical chemistry.

[47]  David R. Walt Fiber Optic Imaging Sensors , 1998 .

[48]  J M Cooper,et al.  Single-cell measurements of purine release using a micromachined electroanalytical sensor. , 1998, Analytical chemistry.

[49]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[50]  D. Walt,et al.  Toward a near-field optical array , 1997 .

[51]  A. Ewing,et al.  Electrochemical Analysis in Picoliter Microvials , 1997 .

[52]  N. Nakagiri,et al.  Twin‐probe scanning tunneling microscope , 1991 .

[53]  S. Hosaka,et al.  Formation of nanometer‐sized Au dots on Si substrate in air , 1994 .

[54]  J. Kauer,et al.  A chemical-detecting system based on a cross-reactive optical sensor array , 1996, Nature.

[55]  S. Jacobson,et al.  Microchip device for performing enzyme assays. , 1997, Analytical chemistry.

[56]  Michael R. Neuman,et al.  Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart , 1995 .

[57]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[58]  J. Jersch,et al.  Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip , 1996 .

[59]  W. Heineman,et al.  Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. , 1993, Analytical chemistry.

[60]  Daniel Rugar,et al.  Gold deposition from a scanning tunneling microscope tip , 1991 .

[61]  Shudong Jiang,et al.  Reproducible Fabrication Technique of Nanometric Tip Diameter Fiber Probe for Photon Scanning Tunneling Microscope , 1992 .

[62]  K. Birkelund,et al.  Optical near‐field lithography on hydrogen‐passivated silicon surfaces , 1996 .

[63]  David R. Walt,et al.  Ordered nanowell arrays , 1996 .