Chlamydomonas reinhardtii

Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombint proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.

[1]  S. Purton,et al.  Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker , 2000, Molecular and General Genetics MGG.

[2]  G. Walsh Second-generation biopharmaceuticals. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[3]  S. Mayfield,et al.  Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. , 2004, The Plant journal : for cell and molecular biology.

[4]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[5]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[6]  S. Mayfield,et al.  Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes , 2005, Molecular Genetics and Genomics.

[7]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[8]  Thomas A Kost,et al.  Baculovirus as versatile vectors for protein expression in insect and mammalian cells , 2005, Nature Biotechnology.

[9]  E. H. Harris,et al.  Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides , 1998, Plant Molecular Biology.

[10]  S. P. Holloway,et al.  Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas , 1999, Molecular and General Genetics MGG.

[11]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[12]  I. S. Johnson Human insulin from recombinant DNA technology. , 1983, Science.

[13]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[14]  M. Goldschmidt-Clermont,et al.  Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. , 1991, Nucleic acids research.

[15]  S. Mayfield,et al.  Recent developments in the production of human therapeutic proteins in eukaryotic algae , 2005, Expert opinion on biological therapy.

[16]  S. Merchant,et al.  Copper Response Element and Crr1-Dependent Ni2+-Responsive Promoter for Induced, Reversible Gene Expression in Chlamydomonas reinhardtii , 2003, Eukaryotic Cell.

[17]  R. Fischer,et al.  Molecular farming of pharmaceutical proteins , 2004, Transgenic Research.

[18]  Ken Garber,et al.  Biotech industry faces new bottleneck , 2001, Nature Biotechnology.

[19]  S. Mayfield,et al.  Prospects for molecular farming in the green alga Chlamydomonas. , 2004, Current opinion in plant biology.

[20]  Christopher Preston,et al.  Pollen-Mediated Movement of Herbicide Resistance Between Commercial Canola Fields , 2002, Science.

[21]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[22]  S. Purton,et al.  Microalgae as bioreactors , 2005, Plant Cell Reports.

[23]  D. Quist,et al.  Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico , 2001, Nature.

[24]  M. Tsan,et al.  Endotoxin Contamination in Recombinant Human Heat Shock Protein 70 (Hsp70) Preparation Is Responsible for the Induction of Tumor Necrosis Factor α Release by Murine Macrophages* , 2003, The Journal of Biological Chemistry.

[25]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[26]  Richard T. Sayre,et al.  Growth and Heavy Metal Binding Properties of Transgenic Chlamydomonas Expressing a Foreign Metallothionein Gene , 1999 .

[27]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Matsuo,et al.  Real-Time Monitoring of Chloroplast Gene Expression by a Luciferase Reporter: Evidence for Nuclear Regulation of Chloroplast Circadian Period , 2006, Molecular and Cellular Biology.

[29]  M. Schroda RNA silencing in Chlamydomonas: mechanisms and tools , 2006, Current Genetics.

[30]  Jeff Shrager,et al.  Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii , 2006, Current Genetics.

[31]  Gary Walsh Biopharmaceutical benchmarks—2003 , 2003, Nature Biotechnology.

[32]  I. Hwang,et al.  Stable Integration and Functional Expression of Flounder Growth Hormone Gene in Transformed Microalga, Chlorella ellipsoidea , 2002, Marine Biotechnology.

[33]  Jeff Shrager,et al.  Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches , 2004, Photosynthesis Research.

[34]  Peter Berthold,et al.  An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. , 2002, Protist.

[35]  M. Fuhrmann,et al.  Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. , 2002, Protist.

[36]  R. Werner,et al.  Economic aspects of commercial manufacture of biopharmaceuticals. , 2004, Journal of biotechnology.

[37]  R. Loppes,et al.  Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter , 1999, Plant Molecular Biology.

[38]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[39]  M. Melkonian,et al.  In vivo localization of centrin in the green alga Chlamydomonas reinhardtii. , 2002, Cell motility and the cytoskeleton.

[40]  Jürgen Eck,et al.  Metagenomics and industrial applications , 2005, Nature Reviews Microbiology.

[41]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[42]  D. Borovsky Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control , 2003, Journal of Experimental Biology.

[43]  Richard T. Sayre,et al.  Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae , 2002, The Plant Cell Online.

[44]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[45]  Emilio Fernández,et al.  Transgenic microalgae as green cell-factories. , 2004, Trends in biotechnology.

[46]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[47]  Nandita Sarkar,et al.  Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. , 2004, The Plant journal : for cell and molecular biology.

[48]  S. Mayfield,et al.  Expression of human antibodies in eukaryotic micro-algae. , 2005, Vaccine.

[49]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[50]  D. Weeks,et al.  Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. , 2002, The Plant journal : for cell and molecular biology.

[51]  H. Cerutti,et al.  Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. , 1997, The Plant cell.

[52]  Richard L. Hawkins,et al.  Expression of Human Growth Hormone by the Eukaryotic Alga, Chlorella , 1999, Current Microbiology.

[53]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Irina Sizova,et al.  Nuclear-Gene Targeting by Using Single-Stranded DNA Avoids Illegitimate DNA Integration in Chlamydomonas reinhardtii , 2005, Eukaryotic Cell.

[55]  S. Mayfield,et al.  Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. , 2002, The Plant journal : for cell and molecular biology.