Exploiting Treewidth for Projected Model Counting and its Limits

In this paper, we introduce a novel algorithm to solve projected model counting (PMC). PMC asks to count solutions of a Boolean formula with respect to a given set of projected variables, where multiple solutions that are identical when restricted to the projected variables count as only one solution. Our algorithm exploits small treewidth of the primal graph of the input instance. It runs in time \({\mathcal O}(2^{2^{k+4}} n^2)\) where k is the treewidth and n is the input size of the instance. In other words, we obtain that the problem PMC is fixed-parameter tractable when parameterized by treewidth. Further, we take the exponential time hypothesis (ETH) into consideration and establish lower bounds of bounded treewidth algorithms for PMC, yielding asymptotically tight runtime bounds of our algorithm.

[1]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[2]  Martin Gebser,et al.  Detecting inconsistencies in large biological networks with answer set programming , 2008, Theory and Practice of Logic Programming.

[3]  Adnan Darwiche,et al.  Basing Decisions on Sentences in Decision Diagrams , 2012, AAAI.

[4]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[5]  Guy Van den Broeck,et al.  Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions , 2015, IJCAI.

[6]  A. H. Murphy,et al.  Hailfinder: A Bayesian system for forecasting severe weather , 1996 .

[7]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[8]  Jan Arne Telle,et al.  Solving #SAT and MAXSAT by Dynamic Programming , 2015, J. Artif. Intell. Res..

[9]  Heribert Vollmer,et al.  The satanic notations , 1995, SIGACT News.

[10]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[11]  Martin Grötschel,et al.  Handbook of combinatorics (vol. 1) , 1996 .

[12]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[13]  Reinhard Diestel,et al.  Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.

[14]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[15]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[16]  Peter J. Stuckey,et al.  #∃SAT: Projected Model Counting , 2015, SAT.

[17]  Matthew L. Ginsberg,et al.  Supermodels and Robustness , 1998, AAAI/IAAI.

[18]  Joris van der Hoeven,et al.  Even faster integer multiplication , 2014, J. Complex..

[19]  Carmel Domshlak,et al.  Probabilistic Planning via Heuristic Forward Search and Weighted Model Counting , 2007, J. Artif. Intell. Res..

[20]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[21]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[22]  Olivier Pourret,et al.  Bayesian networks : a practical guide to applications , 2008 .

[23]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[24]  Stefan Rümmele,et al.  Counting and Enumeration Problems with Bounded Treewidth , 2010, LPAR.

[25]  Supratik Chakraborty,et al.  Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls , 2016, IJCAI.

[26]  Stefan Woltran,et al.  DynASP2.5: Dynamic Programming on Tree Decompositions in Action , 2017, IPEC.

[27]  Martin Gebser,et al.  Solution Enumeration for Projected Boolean Search Problems , 2009, CPAIOR.

[28]  Michael Lampis,et al.  Treewidth with a Quantifier Alternation Revisited , 2018, IPEC.

[29]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[30]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[31]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[32]  R. D. Richtmyer,et al.  Introduction to the foundations of mathematics , 1953 .

[33]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[34]  Marko Samer,et al.  Algorithms for propositional model counting , 2007, J. Discrete Algorithms.

[35]  Serge Abiteboul,et al.  Foundations of Databases: The Logical Level , 1995 .

[36]  Stefan Woltran,et al.  Dynamic Programming-based QBF Solving , 2016, QBF@SAT.

[37]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[38]  Moshe Y. Vardi,et al.  Counting-Based Reliability Estimation for Power-Transmission Grids , 2017, AAAI.

[39]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[40]  Jean-Marie Lagniez,et al.  An Improved Decision-DNNF Compiler , 2017, IJCAI.

[41]  Phokion G. Kolaitis,et al.  Subtractive reductions and complete problems for counting complexity classes , 2000 .

[42]  Stefan Woltran,et al.  Answer Set Solving with Bounded Treewidth Revisited , 2017, LPNMR.

[43]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[44]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .