Electroweak sector under scrutiny: A combined analysis of LHC and electroweak precision data

We perform a comprehensive study of the Higgs couplings, gauge-boson couplings to fermions and triple gauge boson vertices. We work in the framework of effective theories including the effects of the dimension-six operators contributing to these observables. We determine the presently allowed range for the coefficients of these operators via a 20 parameter global fit to the electroweak precision data, as well as electroweak diboson and Higgs production data from LHC Run 1 and 2. We quantify the improvement on the determination of the 20 Wilson coefficients by the inclusion of the Run 2 results. In particular we present a novel analysis of the ATLAS Run 2 36.1 $\rm fb^{-1}$ data on the transverse mass distribution of $W^+W^-$ and $W^\pm Z$ in the leptonic channel which allow for stronger tests of the triple gauge boson vertices. We discuss the discrete (quasi)-degeneracies existing in the parameter space of operator coefficients relevant for the Higgs couplings to fermions and gauge bosons. In particular we show how the inclusion of the incipient $tH$ data can break those degeneracies in the determination of the top-Higgs coupling. We also discuss and quantify the effect of keeping the terms quadratic in the Wilson coefficients in the analysis and we show the importance of the Higgs data to constrain some of the operators that modify the triple gauge boson couplings in the linear regime.

[1]  Steven Weinberg,et al.  Baryon and Lepton Nonconserving Processes , 1979 .

[2]  H. Politzer Power corrections at short distances , 1980 .

[3]  H. Georgi,et al.  Chiral quarks and the non-relativistic quark model , 1984 .

[4]  Kaoru Hagiwara,et al.  Probing the weak boson sector in e + e - →W + W - , 1987 .

[5]  Howard Georgi,et al.  On-shell effective field theory☆☆☆ , 1991 .

[6]  B. Holstein,et al.  Dynamics of the Standard Model , 1992 .

[7]  M. B. Gavela,et al.  The self-couplings of vector bosons : does LEP-1 obviate LEP-2? , 1992 .

[8]  Ishihara,et al.  Low energy effects of new interactions in the electroweak boson sector. , 1993, Physical review. D, Particles and fields.

[9]  H. Simma Equations of motion for effective Lagrangians and Penguins in rareB-decays , 1993, hep-ph/9307274.

[10]  C. Arzt Reduced effective lagrangians , 1993, hep-ph/9304230.

[11]  K. Hagiwara,et al.  Probing non-standard bosonic interactions via W-boson pair production at lepton colliders , 1996, hep-ph/9612268.

[12]  S. Novaes,et al.  Limits on Anomalous Couplings from Higgs Boson Production at the Fermilab Tevatron Collider , 1997, hep-ph/9801250.

[13]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[14]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[15]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[16]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[17]  V. Barger,et al.  Single top and Higgs associated production at the LHC. , 2009, 0911.1556.

[18]  A. Trzupek,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[19]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[20]  T. Corbett,et al.  Constraining anomalous Higgs boson interactions , 2012, 1207.1344.

[21]  F. Margaroli,et al.  Direct constraints on the top-Higgs coupling from the 8 TeV LHC data , 2013, 1304.1822.

[22]  T. Corbett,et al.  Robust Determination of the Higgs Couplings: Power to the Data , 2012, 1211.4580.

[23]  T. Corbett,et al.  Determining triple gauge boson couplings from Higgs data. , 2013, Physical review letters.

[24]  A. Pomarol,et al.  Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions , 2013, 1308.1879.

[25]  Jae Sik Lee,et al.  Probing the top-Yukawa coupling in associated Higgs production with a single top quark , 2014, 1403.2053.

[26]  M. Pierini,et al.  Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics☆ , 2014, 1410.6940.

[27]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[28]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[29]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[30]  T. Plehn,et al.  The Higgs legacy of the LHC Run I , 2015, 1505.05516.

[31]  T. Corbett,et al.  Unitarity constraints on dimension-six operators , 2014, 1411.5026.

[32]  M. Kraemer,et al.  Vices and virtues of Higgs effective field theories at large energy , 2014, 1406.7320.

[33]  F. Krauss,et al.  Higgs-Strahlung: Merging the NLO Drell-Yan and Loop-Induced 0+1 jet Multiplicities , 2015, 1509.01597.

[34]  Tilman Plehn,et al.  The gauge-Higgs legacy of the LHC Run I , 2016 .

[35]  J. Brehmer,et al.  Pushing Higgs Effective Theory to its Limits , 2015, 1510.03443.

[36]  P. Catastini,et al.  Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment , 2015, 1507.04548.

[37]  Christophe Grojean,et al.  On the validity of the effective field theory approach to SM precision tests , 2016, Journal of High Energy Physics.

[38]  Minho Son,et al.  Anomalous triple gauge couplings in the effective field theory approach at the LHC , 2016, 1609.06312.

[39]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[40]  Sahal Yacoob,et al.  Measurements of W±Z production cross sections in pp collisions at s =8 TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings , 2016 .

[41]  M. P. Casado,et al.  Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV with the ATLAS detector , 2017 .

[42]  T. Corbett,et al.  Unitarity Constraints on Dimension-six Operators II: Including Fermionic Operators , 2017, 1705.09294.

[43]  V. M. Ghete,et al.  Measurement of the WZ production cross section in pp collisions at $$\sqrt{s} = 7$$s=7 and 8$$\,\text{TeV}$$TeV and search for anomalous triple gauge couplings at $$\sqrt{s} = 8\,\text{TeV} $$s=8TeV , 2016, The European physical journal. C, Particles and fields.

[44]  Zhengkang Zhang Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production. , 2016, Physical review letters.

[45]  S. Dawson,et al.  NLO QCD effective field theory analysis of W+ W- production at the LHC including fermionic operators , 2017, 1708.03332.

[46]  John Ellis,et al.  Updated global SMEFT fit to Higgs, diboson and electroweak data , 2018, Journal of High Energy Physics.

[47]  A. Alves,et al.  Effect of fermionic operators on the gauge legacy of the LHC Run I , 2018, Physical Review D.

[48]  P. Alam ‘O’ , 2021, Composites Engineering: An A–Z Guide.