Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions

We consider the singularly perturbed fourth-order boundary value problem ε2Δ2u −Δu = f on the unit square Ω⊂ℝ2${\Omega }\subset \mathbb {R}^{2}$, with boundary conditions u = ∂u/∂n = 0 on ∂Ω. Here, ε ∈ (0,1) is a small parameter. The problem is solved numerically by means of Adini finite elements—a simple nonconforming finite element method for this problem. Under reasonable assumptions on the structure of the boundary layers that appear in the solution, a family of suitable Shishkin meshes with N2 elements is constructed and convergence of the method is proved in a ‘broken’ version of the Sobolev norm v↦ε2|v|22+|v|121/2$v\mapsto \left (\varepsilon ^{2}|v|_{2}^{2} + |v|_{1}^{2} \right )^{1/2}$. For a particular choice of the mesh, the error in the computed solution is at most C [ε1/2(N− 1 lnN)2 + min {ε1/2,ε− 3/2N− 2} + N− 3], where the constant C is independent of ε and N. Numerical results support our theoretical convergence rates, even for an example where not all the hypotheses of our theory are satisfied.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Yunqing Huang,et al.  The correction operator for the canonical interpolation operator of the Adini element and the lower bounds of eigenvalues , 2012 .

[4]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[5]  Dongyang Shi,et al.  Anisotropic interpolations with application to nonconforming elements , 2004 .

[6]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[7]  Sebastian Franz,et al.  Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems , 2016, Comput. Math. Appl..

[8]  Susanne C. Brenner,et al.  A C0 Interior Penalty Method for a Fourth Order Elliptic Singular Perturbation Problem , 2011, SIAM J. Numer. Anal..

[9]  Zhang,et al.  A POSTERIORI ESTIMATOR OF NONCONFORMING FINITE ELEMENT METHOD FOR FOURTH ORDER ELLIPTIC PERTURBATION PROBLEMS , 2008 .

[10]  Shipeng Mao,et al.  Accuracy analysis of Adini's non‐conforming plate element on anisotropic meshes , 2005 .

[11]  Shaochun Chen,et al.  Uniformly convergent C 0‐nonconforming triangular prism element for fourth‐order elliptic singular perturbation problem , 2014 .

[12]  V. B. Andreev On the accuracy of grid approximations to nonsmooth solutions of a singularly perturbed reaction-diffusion equation in the square , 2006 .

[13]  Runchang Lin,et al.  Robust residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems , 2016, 1609.04506.

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Xiaoping Xie,et al.  Uniformly Stable Rectangular Elements for Fourth Order Elliptic Singular Perturbation Problems , 2011 .

[16]  Sebastian Franz,et al.  A C0 interior penalty method for a singularly‐perturbed fourth‐order elliptic problem on a layer‐adapted mesh , 2014 .

[17]  Kai Tang,et al.  Morley-Wang-Xu element methods with penalty for a fourth order elliptic singular perturbation problem , 2017, Adv. Comput. Math..

[18]  Jun Hu,et al.  Capacity of the Adini Element for Biharmonic Equations , 2016, J. Sci. Comput..

[19]  Ping Luo,et al.  High Accuracy Analysis of the Adini's Nonconforming Element , 2002, Computing.

[20]  Xue-Cheng Tai,et al.  A robust nonconforming H2-element , 2001, Math. Comput..

[21]  Shaochun Chen,et al.  UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM , 2014 .

[22]  Hua Li,et al.  A new robust C0-type nonconforming triangular element for singular perturbation problems , 2010, Appl. Math. Comput..

[23]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[24]  Jun Hu,et al.  A Lower Bound of the L2 Norm Error Estimate for the Adini Element of the Biharmonic Equation , 2013, SIAM J. Numer. Anal..

[25]  Christos Xenophontos,et al.  An hp finite element method for a 4th order singularly perturbed boundary value problem in two dimensions , 2017, Comput. Math. Appl..

[26]  Sashikumaar Ganesan,et al.  Finite Elements: Theory and Algorithms , 2017 .

[27]  Wang,et al.  A ROBUST FINITE ELEMENT METHOD FOR A 3-D ELLIPTIC SINGULAR PERTURBATION PROBLEM , 2007 .

[28]  Jinchao Xu,et al.  SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS , 2007 .

[29]  Christos Xenophontos,et al.  An hp finite element method for 4th order singularly perturbed problems , 2016, Numerical Algorithms.

[30]  Shao-chunChen,et al.  NON C^0 NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM , 2005 .

[31]  Susanne C. Brenner,et al.  C0 penalty methods for the fully nonlinear Monge-Ampère equation , 2011, Math. Comput..

[32]  Bill Semper Conforming finite element approximations for a fourth-order singular perturbation problem , 1992 .

[33]  J. Guzmán,et al.  A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem , 2012 .