Frequency-based fusion of multiresolution images

This paper gives brief overviews on common image fusion methods in both spatial and spectral domains, and proposes a frequency-based image fusion approach for preserving the spatial and spectral information in merging multiresolution images. Procedures of these image fusion approaches and resulted images from merging QuickBird panchromatic and multispectral images are presented. In comparison with the other fusion methods tested, the suggested frequency-based fusion approach is flexible and suitable for enhancing the information content of the multiresolution images.

[1]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[2]  Robert A. Schowengerdt,et al.  Reconstruction of multispatial, multispectral image data using spatial frequency content , 1980 .

[3]  Jim. Vrabel,et al.  Multispectral imagery band sharpening study , 1996 .

[4]  P. Chavez,et al.  Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis , 1989 .

[5]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  T. M. Lillesand,et al.  Remote sensing and image interpretation. Second edition , 1987 .

[7]  Alan R. Gillespie,et al.  Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques , 1987 .

[8]  P. S. Chavez,et al.  Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona region , 1988 .

[9]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[10]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[12]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .