Mass spectrometry of natural products: current, emerging and future technologies.

Although mass spectrometry is a century old technology, we are entering into an exciting time for the analysis of molecular information directly from complex biological systems. In this Highlight, we feature emerging mass spectrometric methods and tools used by the natural product community and give a perspective of future directions where the mass spectrometry field is migrating towards over the next decade.

[1]  Y. Duan,et al.  Plasma-based ambient mass spectrometry techniques: The current status and future prospective. , 2015, Mass spectrometry reviews.

[2]  B. Colsch,et al.  High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. , 2014, Mass spectrometry reviews.

[3]  M. Kraft,et al.  Imaging lipids with secondary ion mass spectrometry. , 2014, Biochimica et biophysica acta.

[4]  C. Liaw,et al.  Bringing microbial interactions to light using imaging mass spectrometry. , 2014, Natural product reports.

[5]  J. Frisvad,et al.  Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up to 3000 fungal secondary metabolites , 2014, Analytical and Bioanalytical Chemistry.

[6]  M. Schorn,et al.  Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors. , 2014, ACS chemical biology.

[7]  Khozirah Shaari,et al.  Prioritization of natural extracts by LC-MS-PCA for the identification of new photosensitizers for photodynamic therapy. , 2014, Analytical chemistry.

[8]  L. Putignani,et al.  The Role of Mass Spectrometry in the “Omics” Era , 2013, Current organic chemistry.

[9]  Michael Becker,et al.  Analysis and interpretation of imaging mass spectrometry data by clustering mass-to-charge images according to their spatial similarity. , 2013, Analytical chemistry.

[10]  Bradley S Moore,et al.  Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules , 2013, Proceedings of the National Academy of Sciences.

[11]  Ludovic C. Gillet,et al.  Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system , 2013, Nature Methods.

[12]  Bradley S Moore,et al.  MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus , 2013, The Journal of Antibiotics.

[13]  Roger G. Linington,et al.  Molecular networking as a dereplication strategy. , 2013, Journal of natural products.

[14]  K. Rissanen,et al.  Corrigendum: X-ray analysis on the nanogram to microgram scale using porous complexes , 2013, Nature.

[15]  Nicholas H Oberlies,et al.  High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. , 2013, Journal of natural products.

[16]  Erin E. Carlson,et al.  Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. , 2013, ACS chemical biology.

[17]  Oliver Fiehn,et al.  LipidBlast - in-silico tandem mass spectrometry database for lipid identification , 2013, Nature Methods.

[18]  Nuno Bandeira,et al.  MS/MS networking guided analysis of molecule and gene cluster families , 2013, Proceedings of the National Academy of Sciences.

[19]  Jean-Luc Wolfender,et al.  Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics: a systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. , 2013, Journal of chromatography. A.

[20]  Hans H Maurer,et al.  What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? , 2013, Journal of chromatography. A.

[21]  Yong-Moon Lee,et al.  Simultaneous molecular formula determinations of natural compounds in a plant extract using 15 T Fourier transform ion cyclotron resonance mass spectrometry , 2013, Plant Methods.

[22]  D. Kavan,et al.  CYCLONE—A Utility for De Novo Sequencing of Microbial Cyclic Peptides , 2013, Journal of The American Society for Mass Spectrometry.

[23]  B. Spengler,et al.  Mass spectrometry imaging with high resolution in mass and space , 2013, Histochemistry and Cell Biology.

[24]  Takahiro Hayasaka,et al.  MALDI Imaging Mass Spectrometry-A Mini Review of Methods and Recent Developments. , 2013, Mass spectrometry.

[25]  P. Dorrestein,et al.  Data-Independent Microbial Metabolomics with Ambient Ionization Mass Spectrometry , 2013, Journal of The American Society for Mass Spectrometry.

[26]  P. Dorrestein,et al.  Analytical chemistry: Virulence caught green-handed. , 2013, Nature chemistry.

[27]  Prabha Dwivedi,et al.  Mass spectrometry: recent advances in direct open air surface sampling/ionization. , 2013, Chemical reviews.

[28]  P. Dorrestein,et al.  Microbial metabolic exchange in 3D , 2013, The ISME Journal.

[29]  C. Hertweck,et al.  Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen. , 2012, Angewandte Chemie.

[30]  Johan Isaksson,et al.  A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. , 2012, Angewandte Chemie.

[31]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[32]  M. Fischbach,et al.  Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. , 2012, Analytical chemistry.

[33]  Chad W. Johnston,et al.  Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery , 2012, Proceedings of the National Academy of Sciences.

[34]  Doug R. Braun,et al.  Structure and Biosynthesis of the Antibiotic Bottromycin D , 2012, Organic letters.

[35]  Thomas Hankemeier,et al.  Fragmentation trees for the structural characterisation of metabolites , 2012, Rapid communications in mass spectrometry : RCM.

[36]  M. Clench,et al.  Instrumentation and software for mass spectrometry imaging--making the most of what you've got. , 2012, Journal of proteomics.

[37]  R. Heeren,et al.  Emerging technologies in mass spectrometry imaging. , 2012, Journal of proteomics.

[38]  A. Carroll,et al.  High resolution spatial mapping of brominated pyrrole-2-aminoimidazole alkaloids distributions in the marine sponge Stylissa flabellata via MALDI-mass spectrometry imaging. , 2012, Molecular bioSystems.

[39]  Pieter C. Dorrestein,et al.  Primer on Agar-Based Microbial Imaging Mass Spectrometry , 2012, Journal of bacteriology.

[40]  J. Clardy,et al.  Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin , 2012, Organic letters.

[41]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[42]  Dafang Zhong,et al.  Recent advances in metabolite identification and quantitative bioanalysis by LC-Q-TOF MS. , 2012, Bioanalysis.

[43]  Jonathan L. Klassen,et al.  Microbial Strain Prioritization Using Metabolomics Tools for the Discovery of Natural Products , 2012, Analytical chemistry.

[44]  Thomas Zichner,et al.  Identifying the unknowns by aligning fragmentation trees. , 2012, Analytical chemistry.

[45]  F. Hernández,et al.  Current use of high-resolution mass spectrometry in the environmental sciences , 2012, Analytical and Bioanalytical Chemistry.

[46]  Richard M. Caprioli,et al.  3D imaging by mass spectrometry: a new frontier. , 2012, Analytical chemistry.

[47]  Cody R. Goodwin,et al.  Structural mass spectrometry: rapid methods for separation and analysis of peptide natural products. , 2012, Journal of natural products.

[48]  G. Parsiegla,et al.  Direct analysis of phycobilisomal antenna proteins and metabolites in small cyanobacterial populations by laser ablation electrospray ionization mass spectrometry. , 2012, Analytical chemistry.

[49]  P. Dorrestein,et al.  Ion mobility mass spectrometry enables the efficient detection and identification of halogenated natural products from cyanobacteria with minimal sample preparation. , 2011, Bioorganic & medicinal chemistry.

[50]  Jens Christian Frisvad,et al.  Dereplication of microbial natural products by LC-DAD-TOFMS. , 2011, Journal of natural products.

[51]  Hosein Mohimani,et al.  Cycloquest: identification of cyclopeptides via database search of their mass spectra against genome databases. , 2011, Journal of proteome research.

[52]  Pieter C. Dorrestein,et al.  A mass spectrometry-guided genome mining approach for natural product peptidogenomics , 2011, Nature chemical biology.

[53]  Rafael Brüschweiler,et al.  NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin , 2011, Accounts of chemical research.

[54]  P. Dorrestein,et al.  Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. , 2011, Microbiology.

[55]  Hosein Mohimani,et al.  Sequencing cyclic peptides by multistage mass spectrometry , 2011, Proteomics.

[56]  Steven T. Loveridge,et al.  Utilizing DART mass spectrometry to pinpoint halogenated metabolites from a marine invertebrate-derived fungus. , 2011, The Journal of organic chemistry.

[57]  Theodore Alexandrov,et al.  Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering , 2011, Bioinform..

[58]  F. Fernández,et al.  Ambient sampling/ionization mass spectrometry: applications and current trends. , 2011, Analytical chemistry.

[59]  E. Nikolaev,et al.  Initial Experimental Characterization of a New Ultra-High Resolution FTICR Cell with Dynamic Harmonization , 2011, Journal of the American Society for Mass Spectrometry.

[60]  Mark Ellisman,et al.  Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. , 2011, Environmental microbiology.

[61]  Ana G. Petrovic,et al.  Epiafzelechin from the root bark of Cassia sieberiana: detection by DART mass spectrometry, spectroscopic characterization, and antioxidant properties. , 2011, Journal of Natural Products.

[62]  Lingjun Li,et al.  From pixel to voxel: a deeper view of biological tissue by 3D mass spectral imaging. , 2011, Bioanalysis.

[63]  L. Gram,et al.  Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise , 2011, Marine Biotechnology.

[64]  F. Schroeder,et al.  NMR-spectroscopic analysis of mixtures: from structure to function. , 2011, Current opinion in chemical biology.

[65]  Stacy D. Brown,et al.  Identification of “Known Unknowns” Utilizing Accurate Mass Data and Chemical Abstracts Service Databases , 2011, Journal of the American Society for Mass Spectrometry.

[66]  N. K. Kaiser,et al.  Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a "walking" calibration equation. , 2011, Analytical chemistry.

[67]  Douglas W. Yu,et al.  A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus , 2010, BMC Biology.

[68]  Michelle L. Reyzer,et al.  Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. , 2010, Journal of proteome research.

[69]  M. Hirai,et al.  MassBank: a public repository for sharing mass spectral data for life sciences. , 2010, Journal of mass spectrometry : JMS.

[70]  Bernd Schneider,et al.  Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. , 2010, Nature chemical biology.

[71]  D. Weston Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. , 2010, The Analyst.

[72]  Kip Guy,et al.  Automated high-throughput system to fractionate plant natural products for drug discovery. , 2010, Journal of natural products.

[73]  Mitsutoshi Setou,et al.  Imaging Mass Spectrometry for Visualization of Drug and Endogenous Metabolite Distribution: Toward In Situ Pharmacometabolomes , 2010, Journal of Neuroimmune Pharmacology.

[74]  R. Cooks,et al.  Axial CID and high pressure resonance CID in a miniature ion trap mass spectrometer using a discontinuous atmospheric pressure interface , 2010, Journal of the American Society for Mass Spectrometry.

[75]  K. Tachibana,et al.  Distribution and Possible Function of the Marine Alkaloid, Norzoanthamine, in the Zoanthid Zoanthus sp. Using MALDI Imaging Mass Spectrometry , 2010, Marine Biotechnology.

[76]  P. Dorrestein,et al.  Imaging mass spectrometry of natural products. , 2009, Natural product reports.

[77]  Pieter C. Dorrestein,et al.  Translating metabolic exchange with imaging mass spectrometry , 2009, Nature chemical biology.

[78]  Y. Jang,et al.  Direct analysis of curcumin in turmeric by DART-MS. , 2009, Phytochemical analysis : PCA.

[79]  M. Adams,et al.  Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry. , 2009, Rapid communications in mass spectrometry : RCM.

[80]  Nuno Bandeira,et al.  Dereplication and De Novo Sequencing of Nonribosomal Peptides , 2009, Nature Methods.

[81]  Zheng Ouyang,et al.  Circular arrays of polymer-based miniature rectilinear ion traps. , 2009, The Analyst.

[82]  M. Clench,et al.  Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. , 2009, Rapid communications in mass spectrometry : RCM.

[83]  P. Dorrestein,et al.  Probing marine natural product defenses with DESI-imaging mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[84]  E. P. Stout,et al.  Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed , 2009, Proceedings of the National Academy of Sciences.

[85]  R. Cooks,et al.  Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. , 2009, The Analyst.

[86]  R. Wirth,et al.  Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis , 2009, Proceedings of the National Academy of Sciences.

[87]  Zheng Ouyang,et al.  Handheld miniature ion trap mass spectrometers. , 2009, Analytical chemistry.

[88]  S. Vaidyanathan,et al.  TOF-SIMS investigation of Streptomyces coelicolor, a mycelial bacterium , 2008 .

[89]  T. Ellingsen,et al.  Characterization of Streptomyces spp. Isolated from the Sea Surface Microlayer in the Trondheim Fjord, Norway , 2008, Marine drugs.

[90]  S. Séror,et al.  In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry , 2008, Proteomics.

[91]  Hartmut Laatsch,et al.  Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. , 2008, Journal of natural products.

[92]  Nuno Bandeira,et al.  Multi-spectra peptide sequencing and its applications to multistage mass spectrometry , 2008, ISMB.

[93]  Mary Kay Harper,et al.  Fractionated Marine Invertebrate Extract Libraries for Drug Discovery , 2008, Molecules.

[94]  P. Dorrestein,et al.  Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. , 2008, Molecular bioSystems.

[95]  P. Dorrestein,et al.  Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages , 2008, Proceedings of the National Academy of Sciences.

[96]  R. Goodacre,et al.  Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. , 2008, Analytical Chemistry.

[97]  Zheng Ouyang,et al.  Miniaturization and geometry optimization of a polymer-based rectilinear ion trap. , 2007, Analytical chemistry.

[98]  David W. Russell,et al.  LMSD: LIPID MAPS structure database , 2006, Nucleic Acids Res..

[99]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[100]  R. Cooks,et al.  Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. , 2005, The Analyst.

[101]  I. Wilson,et al.  High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. , 2005, Journal of proteome research.

[102]  R. Cody,et al.  Versatile new ion source for the analysis of materials in open air under ambient conditions. , 2005, Analytical chemistry.

[103]  R. Cooks,et al.  Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization , 2004, Science.

[104]  R. Caprioli,et al.  Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. , 1997, Analytical chemistry.

[105]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[106]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[107]  B. Yan,et al.  High-throughput fractionation of natural products for drug discovery. , 2012, Methods in molecular biology.

[108]  A. D. Buss,et al.  Natural product chemistry for drug discovery , 2009 .

[109]  M. Karas,et al.  Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. , 1990, Methods in enzymology.