Vortex and Strain Skeletons in Eulerian and Lagrangian Frames

We present an approach to analyze mixing in flow fields by extracting vortex and strain features as extremal structures of derived scalar quantities that satisfy a duality property: They indicate vortical as well as high-strain (saddle-type) regions. Specifically, we consider the Okubo-Weiss criterion and the recently introduced MZ criterion. Although the first is derived from a purely Eulerian framework, the latter is based on Lagrangian considerations. In both cases, high values indicate vortex activity, whereas low values indicate regions of high strain. By considering the extremal features of those quantities, we define the notions of a vortex and a strain skeleton in a hierarchical manner: The collection of maximal zero-dimensional, one-dimensional, and 2D structures assemble the vortex skeleton; the minimal structures identify the strain skeleton. We extract those features using scalar field topology and apply our method to a number of steady and unsteady 3D flow fields.

[1]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[2]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[3]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[4]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[5]  B. R. Noack,et al.  A low‐dimensional Galerkin method for the three‐dimensional flow around a circular cylinder , 1994 .

[6]  R. Strichartz The way of analysis , 1995 .

[7]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[8]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[9]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[10]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[11]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[12]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[13]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[14]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[15]  P. Comte,et al.  Streamwise vortices in Large-Eddy simulations of mixing layers , 1998 .

[16]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[17]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[18]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[19]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[20]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[21]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[22]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[23]  Gerik Scheuermann,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Localized Flow Analysis of 2d and 3d Vector Fields , 2022 .

[24]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[25]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[26]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[27]  Bernd Hamann,et al.  Topology-based simplification for feature extraction from 3D scalar fields , 2005, VIS 05. IEEE Visualization, 2005..

[28]  Simon Stegmaier,et al.  Opening the can of worms: an exploration tool for vortical flows , 2005, VIS 05. IEEE Visualization, 2005..

[29]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[30]  Hans-Peter Seidel,et al.  Feature Flow Fields in Out-of-Core Settings , 2007, Topology-based Methods in Visualization.