Noise robustness and spatially patterned synchronization of cortical oscillators

Robustness to noise and independence from a prior state are phenomena often believed to be determined by the overall topology of a network. We show that these features can instead be present at the level of a single limit cycle, representing the activity of a small group of neurons inside a cortical column. In particular, we find a bifurcation where this limit cycle changes from being susceptible to noise to being remarkably robust to noise, such that any history of input is erased over a single oscillation. We then show how this property leads to spatially patterned synchronization and pattern expression when many such limit cycles are coupled in a large-scale model of the superficial layers of the visual cortex.

[1]  M. Timme,et al.  Stable irregular dynamics in complex neural networks. , 2007, Physical review letters.

[2]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[3]  Jieping Ye,et al.  Network Reconstruction Based on Evolutionary-Game Data via Compressive Sensing , 2011, Physical Review X.

[4]  A. Koulakov,et al.  Model for a robust neural integrator , 2002, Nature Neuroscience.

[5]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[6]  Marc Timme,et al.  Inferring network topology from complex dynamics , 2010, 1007.1640.

[7]  Kevan A. C. Martin,et al.  Topology and dynamics of the canonical circuit of cat V1 , 2009, Neural Networks.

[8]  D. Yates,et al.  Breath analysis in asbestos-related disorders: a review of the literature and potential future applications , 2010, Journal of breath research.

[9]  G. Bard Ermentrout,et al.  5 – An Introduction to Neural Oscillators , 1994 .

[10]  Wen-Xu Wang,et al.  Predicting catastrophes in nonlinear dynamical systems by compressive sensing. , 2011, Physical review letters.

[11]  Cyrille C. Girardin,et al.  Embedding of Cortical Representations by the Superficial Patch System , 2011, Cerebral cortex.

[12]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[13]  Jian-Young Wu,et al.  Spatiotemporal patterns of an evoked network oscillation in neocortical slices: coupled local oscillators. , 2006, Journal of neurophysiology.

[14]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[15]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[16]  H. Poincaré,et al.  Mémoire sur les courbes définies par une équationdifférentielle (I) , 1881 .

[17]  Bard Ermentrout,et al.  Linearization of F-I Curves by Adaptation , 1998, Neural Computation.

[18]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[19]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[20]  L. Abbott A network of oscillators , 1990 .

[21]  I. Bendixson Sur les courbes définies par des équations différentielles , 1901 .

[22]  Maxim Bazhenov,et al.  Using the Structure of Inhibitory Networks to Unravel Mechanisms of Spatiotemporal Patterning , 2011, Neuron.

[23]  R. B. Freeman,et al.  Neuronal responses in the visual cortex of awake cats to stationary and moving targets , 1971, Experimental Brain Research.

[24]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[25]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[26]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[27]  Sukbin Lim,et al.  Noise Tolerance of Attractor and Feedforward Memory Models , 2012, Neural Computation.

[28]  Jean-Jacques E. Slotine,et al.  Collective Stability of Networks of Winner-Take-All Circuits , 2011, Neural Computation.

[29]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[30]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[31]  Kerry M. M. Walker,et al.  Multiplexed and Robust Representations of Sound Features in Auditory Cortex , 2011, The Journal of Neuroscience.

[32]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[33]  Wen-Xu Wang,et al.  Noise bridges dynamical correlation and topology in coupled oscillator networks. , 2010, Physical review letters.

[34]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[35]  Richard H. R. Hahnloser,et al.  On the piecewise analysis of networks of linear threshold neurons , 1998, Neural Networks.

[36]  Dezhe Z. Jin,et al.  Support for a synaptic chain model of neuronal sequence generation , 2010, Nature.

[37]  Wen-Xu Wang,et al.  Time-series–based prediction of complex oscillator networks via compressive sensing , 2011 .

[38]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[39]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[40]  Jian-Young Wu,et al.  Propagating Waves of Activity in the Neocortex: What They Are, What They Do , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.