Characterization by electron probe microanalysis, Raman spectroscopy and transmission electron microscopy of a MOX fuel sintered from a freeze-granulated powder

[1]  G. Bernard-Granger,et al.  Influence of the PuO2 content on the sintering behaviour of UO2-PuO2 freeze-granulated powders under reducing conditions , 2021 .

[2]  D. Manara,et al.  Determination of the plutonium content and O/M ratio of (U,Pu)O2-x using Raman spectroscopy , 2020, Journal of Nuclear Materials.

[3]  F. Mompiou,et al.  pycotem: An open source toolbox for online crystal defect characterization from TEM imaging and diffraction , 2020, Journal of microscopy.

[4]  G. Bernard-Granger,et al.  Sintering investigations of a UO2-PuO2 powder synthesized using the freeze-granulation route , 2020 .

[5]  G. Bernard-Granger,et al.  Sintering of a UO2-PuO2 freeze-granulated powder under reducing conditions , 2020 .

[6]  G. Bernard-Granger,et al.  Dense and homogeneous MOX fuel pellets manufactured using the freeze granulation route , 2020 .

[7]  Masashi Watanabe,et al.  Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O 2±x , 2017 .

[8]  Andreas C Scheinost,et al.  Room-temperature oxidation of hypostoichiometric uranium-plutonium mixed oxides U 1-y Pu y O 2-x - A depth-selective approach , 2015 .

[9]  K. Konashi,et al.  Thermal expansion of PuO2 , 2014 .

[10]  S. Yamanaka,et al.  Formation and Growth of Image Crystals by Helium Precipitation , 2013 .

[11]  Christine Guéneau,et al.  Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems , 2011 .

[12]  K. Konashi,et al.  Oxygen potential of (U0.88Pu0.12)O2±x and (U0.7Pu0.3)O2±x at high temperatures of 1673–1873 K , 2011 .

[13]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.

[14]  T. Livneh,et al.  Effect of pressure on the resonant multiphonon Raman scattering in UO 2 , 2006 .

[15]  M. R. Castell Wulff shape of microscopic voids inUO2crystals , 2003 .

[16]  R. Grimes,et al.  Modification of UO2 crystal morphologies through hydroxylation , 2001 .

[17]  Robin W. Grimes,et al.  Morphology of UO2 , 1999 .

[18]  Kazuhiro Nogita,et al.  Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6–83 GWd/t , 1993 .

[19]  L. E. Thomas,et al.  Microstructural analysis of LWR spent fuels at high burnup , 1992 .

[20]  J. Pouchou,et al.  EXTENSION DES POSSIBILITÉS QUANTITATIVES DE LAMICROANALYSE PAR UNE FORMULATION NOUVELLE DES EFFETS DE MATRICE , 1984 .

[21]  H. Furuya,et al.  Dependence on Strain Rate and Temperature Shown by Yield Stress of Uranium Dioxide , 1976 .

[22]  V. Wheeler,et al.  Thermodynamic and composition changes in UO2±x (x< 0.005) at 1950 K , 1972 .

[23]  H. Blank,et al.  A study of the ternary system U02-Pu02-Pu203 , 1970 .

[24]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[25]  Jorgen Selsing,et al.  Internal Stresses in Ceramics , 1961 .

[26]  S. Fernández,et al.  Raman spectroscopy coupled to principal component analysis for studying UO2 nuclear fuels with different grain sizes due to the chromia addition , 2021 .

[27]  P. Buisson Rôle de la distribution des compositions cationiques sur l'aptitude à la dissolution des combustibles MOX : caractérisation de la distribution par diffraction des rayons X sur poudre , 1999 .

[28]  Jean Philibert,et al.  Atom movements: Diffusion and mass transport in solids , 1991 .

[29]  W. V. Lierde On the surface free energy anisotropy of UO2 , 1970 .