Characterization by electron probe microanalysis, Raman spectroscopy and transmission electron microscopy of a MOX fuel sintered from a freeze-granulated powder
暂无分享,去创建一个
G. Bernard-Granger | L. Ramond | D. Drouan | Catherine Sabathier | J. Simeon | P. Martin | F. Lebreton
[1] G. Bernard-Granger,et al. Influence of the PuO2 content on the sintering behaviour of UO2-PuO2 freeze-granulated powders under reducing conditions , 2021 .
[2] D. Manara,et al. Determination of the plutonium content and O/M ratio of (U,Pu)O2-x using Raman spectroscopy , 2020, Journal of Nuclear Materials.
[3] F. Mompiou,et al. pycotem: An open source toolbox for online crystal defect characterization from TEM imaging and diffraction , 2020, Journal of microscopy.
[4] G. Bernard-Granger,et al. Sintering investigations of a UO2-PuO2 powder synthesized using the freeze-granulation route , 2020 .
[5] G. Bernard-Granger,et al. Sintering of a UO2-PuO2 freeze-granulated powder under reducing conditions , 2020 .
[6] G. Bernard-Granger,et al. Dense and homogeneous MOX fuel pellets manufactured using the freeze granulation route , 2020 .
[7] Masashi Watanabe,et al. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O 2±x , 2017 .
[8] Andreas C Scheinost,et al. Room-temperature oxidation of hypostoichiometric uranium-plutonium mixed oxides U 1-y Pu y O 2-x - A depth-selective approach , 2015 .
[9] K. Konashi,et al. Thermal expansion of PuO2 , 2014 .
[10] S. Yamanaka,et al. Formation and Growth of Image Crystals by Helium Precipitation , 2013 .
[11] Christine Guéneau,et al. Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems , 2011 .
[12] K. Konashi,et al. Oxygen potential of (U0.88Pu0.12)O2±x and (U0.7Pu0.3)O2±x at high temperatures of 1673–1873 K , 2011 .
[13] Dominique Drouin,et al. CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.
[14] T. Livneh,et al. Effect of pressure on the resonant multiphonon Raman scattering in UO 2 , 2006 .
[15] M. R. Castell. Wulff shape of microscopic voids inUO2crystals , 2003 .
[16] R. Grimes,et al. Modification of UO2 crystal morphologies through hydroxylation , 2001 .
[17] Robin W. Grimes,et al. Morphology of UO2 , 1999 .
[18] Kazuhiro Nogita,et al. Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6–83 GWd/t , 1993 .
[19] L. E. Thomas,et al. Microstructural analysis of LWR spent fuels at high burnup , 1992 .
[20] J. Pouchou,et al. EXTENSION DES POSSIBILITÉS QUANTITATIVES DE LAMICROANALYSE PAR UNE FORMULATION NOUVELLE DES EFFETS DE MATRICE , 1984 .
[21] H. Furuya,et al. Dependence on Strain Rate and Temperature Shown by Yield Stress of Uranium Dioxide , 1976 .
[22] V. Wheeler,et al. Thermodynamic and composition changes in UO2±x (x< 0.005) at 1950 K , 1972 .
[23] H. Blank,et al. A study of the ternary system U02-Pu02-Pu203 , 1970 .
[24] Mel I. Mendelson,et al. Average Grain Size in Polycrystalline Ceramics , 1969 .
[25] Jorgen Selsing,et al. Internal Stresses in Ceramics , 1961 .
[26] S. Fernández,et al. Raman spectroscopy coupled to principal component analysis for studying UO2 nuclear fuels with different grain sizes due to the chromia addition , 2021 .
[27] P. Buisson. Rôle de la distribution des compositions cationiques sur l'aptitude à la dissolution des combustibles MOX : caractérisation de la distribution par diffraction des rayons X sur poudre , 1999 .
[28] Jean Philibert,et al. Atom movements: Diffusion and mass transport in solids , 1991 .
[29] W. V. Lierde. On the surface free energy anisotropy of UO2 , 1970 .