Attaching organic semiconductors to gate oxides: in situ assembly of monolayer field effect transistors.

This study unveils a new tetracene derivative that forms dense, upright monolayers on the surface of aluminum oxide. These monolayers spontaneously self-organize into the active layer in nanoscale field-effect transistor devices when aluminum oxide is used as the dielectric layer. This method gives high yields of working devices that have source-drain distances that are less than 60 nm, thereby providing a method to electrically probe the monolayer assemblies formed from approximately 10 zeptomoles of material (approximately 104 molecules). Moreover, this study delineates a new avenue for research in thin-film organic transistors where the active molecules are linked to the dielectric surface to form a monolayer transistor.