Simulation-based test functions for optimization algorithms

When designing or developing optimization algorithms, test functions are crucial to evaluate performance. Often, test functions are not sufficiently difficult, diverse, flexible or relevant to real-world applications. Previously, test functions with real-world relevance were generated by training a machine learning model based on real-world data. The model estimation is used as a test function. We propose a more principled approach using simulation instead of estimation. Thus, relevant and varied test functions are created which represent the behavior of real-world fitness landscapes. Importantly, estimation can lead to excessively smooth test functions while simulation may avoid this pitfall. Moreover, the simulation can be conditioned by the data, so that the simulation reproduces the training data but features diverse behavior in unobserved regions of the search space. The proposed test function generator is illustrated with an intuitive, one-dimensional example. To demonstrate the utility of this approach it is applied to a protein sequence optimization problem. This application demonstrates the advantages as well as practical limits of simulation-based test functions.

[1]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[2]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[3]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[4]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[5]  Michael W. Trosset The Krigifier: A Procedure for Generating Pseudorandom Nonlinear Objective Functions for Computational Experimentation , 1999 .

[6]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[7]  Thomas Bartz-Beielstein How to Create Generalizable Results , 2015, Handbook of Computational Intelligence.

[8]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[9]  H. Künsch Gaussian Markov random fields , 1979 .

[10]  Thomas Bartz-Beielstein,et al.  Efficient global optimization for combinatorial problems , 2014, GECCO.

[11]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[12]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[13]  Günter Rudolph,et al.  Two-layered Surrogate Modeling for Tuning Optimization Metaheuristics , 2009 .

[14]  Ahmed Kattan,et al.  Geometric Generalisation of Surrogate Model Based Optimisation to Combinatorial Spaces , 2011, EvoCOP.

[15]  Thomas Bartz-Beielstein,et al.  Distance Measures for Permutations in Combinatorial Efficient Global Optimization , 2014, PPSN.

[16]  Marcus Gallagher,et al.  A general-purpose tunable landscape generator , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[18]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[19]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[20]  Oliver Flasch,et al.  A modular genetic programming system , 2015 .

[21]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[22]  Douglas B. Kell,et al.  Predictive models for population performance on real biological fitness landscapes , 2010, Bioinform..

[23]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[24]  Carlos A. Coello Coello,et al.  Test Function Generators for Assessing the Performance of PSO Algorithms in Multimodal Optimization , 2011 .

[25]  Michael L. Stein,et al.  Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice , 2014, 1402.4281.

[26]  Joshua D. Knowles,et al.  Analysis of a complete DNA–protein affinity landscape , 2010, Journal of The Royal Society Interface.

[27]  Marco Chiarandini,et al.  Mixed Models for the Analysis of Optimization Algorithms , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[28]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[29]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.

[30]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[31]  Thomas Bartz-Beielstein,et al.  From Real World Data to Test Functions , 2017 .

[32]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[33]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[34]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .