Simulation-based test functions for optimization algorithms
暂无分享,去创建一个
Thomas Bartz-Beielstein | Martin Zaefferer | Boris Naujoks | Andreas Fischbach | T. Bartz-Beielstein | B. Naujoks | A. Fischbach | Martin Zaefferer
[1] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[2] L. Darrell Whitley,et al. Building Better Test Functions , 1995, ICGA.
[3] Trevor Hastie,et al. An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.
[4] Stefan M. Wild,et al. Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..
[5] Michael W. Trosset. The Krigifier: A Procedure for Generating Pseudorandom Nonlinear Objective Functions for Computational Experimentation , 1999 .
[6] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[7] Thomas Bartz-Beielstein. How to Create Generalizable Results , 2015, Handbook of Computational Intelligence.
[8] Daniela M. Witten,et al. An Introduction to Statistical Learning: with Applications in R , 2013 .
[9] H. Künsch. Gaussian Markov random fields , 1979 .
[10] Thomas Bartz-Beielstein,et al. Efficient global optimization for combinatorial problems , 2014, GECCO.
[11] Anne Auger,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .
[12] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[13] Günter Rudolph,et al. Two-layered Surrogate Modeling for Tuning Optimization Metaheuristics , 2009 .
[14] Ahmed Kattan,et al. Geometric Generalisation of Surrogate Model Based Optimisation to Combinatorial Spaces , 2011, EvoCOP.
[15] Thomas Bartz-Beielstein,et al. Distance Measures for Permutations in Combinatorial Efficient Global Optimization , 2014, PPSN.
[16] Marcus Gallagher,et al. A general-purpose tunable landscape generator , 2006, IEEE Transactions on Evolutionary Computation.
[17] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[18] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[19] Noel A. C. Cressie,et al. Statistics for Spatial Data: Cressie/Statistics , 1993 .
[20] Oliver Flasch,et al. A modular genetic programming system , 2015 .
[21] K. Dejong,et al. An analysis of the behavior of a class of genetic adaptive systems , 1975 .
[22] Douglas B. Kell,et al. Predictive models for population performance on real biological fitness landscapes , 2010, Bioinform..
[23] Hans-Paul Schwefel,et al. Evolution and Optimum Seeking: The Sixth Generation , 1993 .
[24] Carlos A. Coello Coello,et al. Test Function Generators for Assessing the Performance of PSO Algorithms in Multimodal Optimization , 2011 .
[25] Michael L. Stein,et al. Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice , 2014, 1402.4281.
[26] Joshua D. Knowles,et al. Analysis of a complete DNA–protein affinity landscape , 2010, Journal of The Royal Society Interface.
[27] Marco Chiarandini,et al. Mixed Models for the Analysis of Optimization Algorithms , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[28] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[29] Thomas Stützle,et al. Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.
[30] Thomas Bartz-Beielstein,et al. Experimental Methods for the Analysis of Optimization Algorithms , 2010 .
[31] Thomas Bartz-Beielstein,et al. From Real World Data to Test Functions , 2017 .
[32] Anne Auger,et al. COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..
[33] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[34] Christian Lantuéjoul,et al. Geostatistical Simulation: Models and Algorithms , 2001 .