Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data

[1]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[2]  L. D. Miller,et al.  Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado , 1972 .

[3]  R. Person Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado , 1972 .

[4]  J. Zadoks A decimal code for the growth stages of cereals , 1974 .

[5]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[6]  H. Gausman,et al.  Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops1 , 1977 .

[7]  W. Collins,et al.  Remote sensing of crop type and maturity , 1978 .

[8]  D. Porath,et al.  Chlorophyll determination in intact tissues using n,n-dimethylformamide. , 1980, Plant physiology.

[9]  R. Moran Formulae for determination of chlorophyllous pigments extracted with n,n-dimethylformamide. , 1982, Plant physiology.

[10]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[11]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[12]  R. D. Jackson,et al.  Sun-angle and canopy-architecture effects on the spectral reflectance of six wheat cultivars , 1985 .

[13]  W. Inskeep,et al.  Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone. , 1985, Plant physiology.

[14]  Marvin E. Bauer,et al.  Effects of nitrogen fertilizer on growth and reflectance characteristics of winter wheat , 1986 .

[15]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[16]  U. L. Yadawa,et al.  A Rapid and Nondestructive Method to Determine Chlorophyll in Intact Leaves , 1986, HortScience.

[17]  G. Bonham-Carter Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data , 1988 .

[18]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[19]  Ghassem R. Asrar,et al.  Theory and applications of optical remote sensing. , 1989 .

[20]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[21]  R. J. Porra,et al.  Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989 .

[22]  John R. Miller,et al.  Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model , 1990 .

[23]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[24]  F. Baret,et al.  A ratio vegetation index adjusted for soil brightness , 1990 .

[25]  Douglas G. Pfeiffer,et al.  Growing Conditions Alter the Relationship Between SPAD-501 Values and Apple Leaf Chlorophyll , 1990 .

[26]  E. Chacko,et al.  Relation between extractable chlorophyll and portable chlorophyll meter readings in leaves of eight tropical and subtropical fruit-tree species , 1991 .

[27]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[28]  Jens Grønbech Hansen,et al.  Use of multispectral radiometry in wheat yellow rust experiments , 1991 .

[29]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[30]  Bas A. M. Bouman,et al.  Linking physical remote sensing models with crop growth simulation models, applied for sugar beet , 1992 .

[31]  O. Monje,et al.  Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. , 1992, HortScience : a publication of the American Society for Horticultural Science.

[32]  M. S. Moran,et al.  Bidirectional Calibration Results for 11 Spectralon and 16 BaSO4 Reference Reflectance Panels , 1992 .

[33]  Frédéric Baret,et al.  Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands , 1992 .

[34]  R. Jackson,et al.  Multisite Analyses of Spectral-Biophysical Data for Wheat , 1992 .

[35]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[36]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[37]  Moon S. Kim,et al.  The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .

[38]  Wolfram Mauser,et al.  Imaging Spectroscopy in Hydrology and Agriculture - Determination of Model Parameters , 1994 .

[39]  R. Myneni,et al.  On the relationship between FAPAR and NDVI , 1994 .

[40]  J. Hill,et al.  Imaging spectrometry : a tool for environmental observations , 1994 .

[41]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[42]  Stephan J. Maas,et al.  Combining remote sensing and modeling for estimating surface evaporation and biomass production , 1995 .

[43]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[44]  B. Bouman,et al.  Crop modelling and remote sensing for yield prediction , 1995 .

[45]  P. Curran,et al.  Technical Note Grass chlorophyll and the reflectance red edge , 1996 .

[46]  S. Gandia,et al.  Analyses of spectral-biophysical relationships for a corn canopy , 1996 .

[47]  A. Gitelson,et al.  Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements , 1996 .

[48]  A. Gitelson,et al.  Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .

[49]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[50]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[51]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[52]  A. Kyparissis,et al.  The use of the portable, non-destructive, spad-502 (minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content , 1998 .

[53]  S. Moulin Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat , 1999 .

[54]  P. Pinter,et al.  Measuring Wheat Senescence with a Digital Camera , 1999 .

[55]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[56]  B. M. Petersen,et al.  Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat , 2002 .

[57]  J. Markwell,et al.  Calibration of the Minolta SPAD-502 leaf chlorophyll meter , 2004, Photosynthesis Research.