Direct Fabrication of Free-Standing MOF Superstructures with Desired Shapes by Micro-Confined Interfacial Synthesis.

Recently, metal-organic frameworks (MOFs) with multifunctional pore chemistry have been intensively investigated for positioning the desired morphology at specific locations onto substrates for manufacturing devices. Herein, we develop a micro-confined interfacial synthesis (MIS) approach for fabrication of a variety of free-standing MOF superstructures with desired shapes. This approach for engineering MOFs provides three key features: 1) in situ synthesis of various free-standing MOF superstructures with controlled compositions, shape, and thickness using a mold membrane; 2) adding magnetic functionality into MOF superstructures by loading with Fe3 O4 nanoparticles; 3) transferring the synthesized MOF superstructural array on to flat or curved surface of various substrates. The MIS route with versatile potential opens the door for a number of new perspectives in various applications.

[1]  B. Smarsly,et al.  Metal-organic framework nanofibers via electrospinning. , 2011, Chemical communications.

[2]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[3]  Lixian Sun,et al.  Mesoporous metal-organic frameworks: design and applications , 2012 .

[4]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[5]  Lehui Lu,et al.  Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. , 2014, Chemical reviews.

[6]  Phillip M. Hannam,et al.  Electrospun fibrous mats as skeletons to produce free-standing MOF membranes , 2012 .

[7]  Kui Zhou,et al.  Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. , 2013, Chemical Society reviews.

[8]  Huiliang Wang,et al.  Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization , 2013 .

[9]  Howon Lee,et al.  Programming magnetic anisotropy in polymeric microactuators. , 2011, Nature materials.

[10]  J. Lee,et al.  A polyhedral oligomeric silsesquioxane functionalized copper trimesate. , 2015, Chemical communications.

[11]  K. Okada,et al.  Positioning of the HKUST-1 metal–organic framework (Cu3(BTC)2) through conversion from insoluble Cu-based precursors , 2015 .

[12]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[13]  S. Mayo,et al.  A new method to position and functionalize metal-organic framework crystals , 2011, Nature communications.

[14]  Di Zhang,et al.  In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. , 2005, The journal of physical chemistry. B.

[15]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[17]  Run-Wei Li,et al.  Metal‐Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications , 2015 .

[18]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[19]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[20]  S. Kitagawa,et al.  Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. , 2014, Chemical Society reviews.

[21]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[22]  C. Jin,et al.  General incorporation of diverse components inside metal-organic framework thin films at room temperature , 2014, Nature Communications.

[23]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[24]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[25]  K. Okada,et al.  Copper Conversion into Cu(OH)2 Nanotubes for Positioning Cu3(BTC)2 MOF Crystals: Controlling the Growth on Flat Plates, 3D Architectures, and as Patterns , 2014 .

[26]  Michael J. Katz,et al.  Directed Growth of Electroactive Metal‐Organic Framework Thin Films Using Electrophoretic Deposition , 2014, Advanced materials.

[27]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[28]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[29]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[30]  C. Doherty,et al.  MOF positioning technology and device fabrication. , 2014, Chemical Society reviews.

[31]  Yi‐nan Wu,et al.  A polydopamine layer as the nucleation center of MOF deposition on "inert" polymer surfaces to fabricate hierarchically structured porous films. , 2015, Chemical communications.

[32]  Abhijeet K. Chaudhari,et al.  Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles , 2015, Advanced materials.

[33]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[34]  Howon Lee,et al.  Colour-barcoded magnetic microparticles for multiplexed bioassays. , 2010, Nature materials.

[35]  Kang Liang,et al.  Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation , 2015 .

[36]  D. Olson,et al.  Separation of hydrocarbons with a microporous metal-organic framework. , 2006, Angewandte Chemie.

[37]  S. M. F. Vilela,et al.  Multifunctional metal-organic frameworks: from academia to industrial applications. , 2015, Chemical Society Reviews.

[38]  Ali Morsali,et al.  Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. , 2012, Ultrasonics sonochemistry.

[39]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[40]  A. Hill,et al.  ZnO as an Efficient Nucleating Agent for Rapid, Room Temperature Synthesis and Patterning of Zn-Based Metal–Organic Frameworks , 2015 .

[41]  Seth M. Cohen,et al.  Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. , 2010, Journal of the American Chemical Society.

[42]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[43]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[44]  Sébastien Lecommandoux,et al.  Magnetic responsive polymer composite materials. , 2013, Chemical Society reviews.

[45]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[46]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[47]  M. van der Auweraer,et al.  Patterned film growth of metal-organic frameworks based on galvanic displacement. , 2010, Chemical communications.

[48]  Jiwei Cui,et al.  Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns , 2015, Advanced materials.

[49]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[50]  Huanting Wang,et al.  Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition , 2014, Scientific Reports.

[51]  Omar K. Farha,et al.  Engineering ZIF‐8 Thin Films for Hybrid MOF‐Based Devices , 2012, Advanced materials.

[52]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[53]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[54]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[55]  Xinsheng Peng,et al.  Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. , 2013, Chemical communications.

[56]  Seth M. Cohen,et al.  In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. , 2015, Angewandte Chemie.

[57]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .