Retrospective Bayesian outlier detection in INGARCH series

INGARCH models for time series of counts arising, e.g., in epidemiology or finance assume the observations to be Poisson distributed conditionally on the past, with the conditional mean being an affine-linear function of the previous observations and the previous conditional means. We model outliers within such processes, assuming that we observe a contaminated process with additive Poisson distributed contamination, affecting each observation with a small probability. Our particular concern are additive outliers, which do not enter the dynamics of the process and can represent measurement artifacts and other singular events influencing a single observation. Retrospective analysis of such outliers is difficult within a non-Bayesian framework since the uncontaminated values entering the dynamics of the process at contaminated time points are unobserved. We propose a Bayesian approach to outlier modeling in INGARCH processes, approximating the posterior distribution of the model parameters by application of a componentwise Metropolis-Hastings algorithm. Analyzing real and simulated data sets, we find Bayesian outlier detection with non-informative priors to work well in practice when there are some outliers in the data.

[1]  S. T. Boris Choy,et al.  Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures , 2011, Comput. Stat. Data Anal..

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  M. Otto,et al.  Outliers in Time Series , 1972 .

[4]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[5]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[6]  Jun S. Liu,et al.  The Wang-Landau algorithm in general state spaces: Applications and convergence analysis , 2010 .

[7]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[8]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[9]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[10]  Stéphane Robin,et al.  Exact posterior distributions and model selection criteria for multiple change-point detection problems , 2012, Stat. Comput..

[11]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[12]  ScienceDirect Computational statistics & data analysis , 1983 .

[13]  Konstantinos Fokianos,et al.  Some recent progress in count time series , 2011 .

[14]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[15]  Maria Eduarda Silva,et al.  Detection of additive outliers in Poisson INteger-valued AutoRegressive time series , 2012 .

[16]  C. Robert,et al.  Bayesian Modeling Using WinBUGS , 2009 .

[17]  K. Fokianos,et al.  Interventions in INGARCH processes , 2010 .

[18]  Laurie Davies,et al.  The identification of multiple outliers , 1993 .

[19]  Dag Tjøstheim,et al.  On weak dependence conditions for Poisson autoregressions , 2012 .

[20]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  Victor H. Lachos,et al.  Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions , 2010, Comput. Stat. Data Anal..

[23]  Journal of Chemical Physics , 1932, Nature.

[24]  Tina Hviid Rydberg,et al.  A Modelling Framework for the Prices and Times of Trades Made on the New York Stock Exchange , 1999 .

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[27]  Olivier Darné,et al.  Outliers and GARCH models in financial data , 2005 .

[28]  N. K. Unnikrishnan,et al.  Bayesian analysis for outliers in survey sampling , 2010, Comput. Stat. Data Anal..

[29]  Thomas Brendan Murphy,et al.  Computational aspects of fitting mixture models via the expectation-maximization algorithm , 2012, Comput. Stat. Data Anal..

[30]  Daniel Peña,et al.  Detection of outlier patches in autoregressive time series , 1998 .