Membrane composition-mediated protein-protein interactions

The authors investigate membrane composition-mediated interactions between proteins adsorbed onto a two-component lipid bilayer close to critical demixing using coarse-grained molecular dynamics simulations and a phenomenological Ginzburg-Landau theory. The simulations consist of three-bead lipids and platelike proteins, which adsorb onto the membrane by binding preferentially to one of the two lipid species. The composition profile around one protein and the pair correlation function between two proteins are measured and compared to the analytical predictions. The theoretical framework is applicable to any scalar field embedded in the membrane, and although in this work the authors treat flat membranes, the methodology extends readily to curved geometries. Neglecting fluctuations, both lipid composition profile and induced protein pair potential are predicted to follow a zeroth order modified Bessel function of the second kind with the same characteristic decay length. These predictions are consistent with our molecular dynamics simulations, except that the interaction range is found to be larger than the single profile correlation length.

[1]  T. Weikl Indirect interactions of membrane-adsorbed cylinders , 2003, The European physical journal. E, Soft matter.

[2]  J. Fournier,et al.  Elastic interaction between "hard" or "soft" pointwise inclusions on biological membranes , 2003, The European physical journal. E, Soft matter.

[3]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[4]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[5]  Fluctuation-induced aggregation of rigid membrane inclusions , 2001 .

[6]  Sylvio May,et al.  Molecular Theory of Lipid-Protein Interaction and the Lα-HII Transition , 1999 .

[7]  Saxena,et al.  Phase separation and shape deformation of two-phase membranes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Berend Smit,et al.  Mesoscopic models of biological membranes , 2006 .

[10]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[11]  F. Jähnig Critical effects from lipid-protein interaction in membranes. I. Theoretical description. , 1981, Biophysical journal.

[12]  Gregory A Voth,et al.  Multi-scale modeling of phase separation in mixed lipid bilayers. , 2005, Biophysical journal.

[13]  S. May,et al.  A molecular model for lipid-mediated interaction between proteins in membranes , 2000 .

[14]  F. Sagués,et al.  Actively maintained lipid nanodomains in biomembranes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Paul Dommersnes,et al.  Casimir and mean-field interactions between membrane inclusions subject to external torques , 1999 .

[16]  M. Rao,et al.  Shape Instabilities in the Dynamics of a Two-component Fluid Membrane , 1997, cond-mat/9704171.

[17]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[18]  G. Feigenson Phase boundaries and biological membranes. , 2007, Annual review of biophysics and biomolecular structure.

[19]  M. Haataja,et al.  Domain formation in the plasma membrane: roles of nonequilibrium lipid transport and membrane proteins. , 2008, Physical review letters.

[20]  Gregory A Voth,et al.  Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. , 2005, Biophysical journal.

[21]  T. Lubensky,et al.  Interactions between membrane Inclusions on Fluctuating Membranes , 1996, cond-mat/9601006.

[22]  CRITICAL CASIMIR FORCES BETWEEN SPHERICAL PARTICLES IN FLUIDS , 1998 .

[23]  Sarah L Veatch,et al.  Miscibility phase diagrams of giant vesicles containing sphingomyelin. , 2005, Physical review letters.

[24]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[25]  Long-range elastic forces between membrane inclusions in spherical vesicles , 1998 .

[26]  K. Kremer,et al.  Aggregation and vesiculation of membrane proteins by curvature-mediated interactions , 2007, Nature.

[27]  M. Krech The Casimir Effect , 1994 .

[28]  R. Capovilla,et al.  Stress and geometry of lipid vesicles , 2004 .

[29]  P. Dommersnes,et al.  N-body study of anisotropic membrane inclusions: Membrane mediated interactions and ordered aggregation , 1999, cond-mat/9906232.

[30]  Critical Casimir Forces in Colloidal Suspensions , 2002, cond-mat/0202532.

[31]  S. May,et al.  Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. , 2005, Biophysical journal.

[32]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[33]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[34]  J. Ipsen,et al.  Capillary condensation between disks in two dimensions , 1997 .

[35]  O. G. Mouritsen,et al.  Wetting and capillary condensation as means of protein organization in membranes. , 1997, Biophysical journal.

[36]  Jemal Guven,et al.  Stresses in lipid membranes , 2002 .

[37]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[38]  P. Dommersnes,et al.  Dynamin recruitment by clathrin coats: a physical step? , 2003, Comptes rendus biologies.

[39]  J. Guven Membrane geometry with auxiliary variables and quadratic constraints , 2004, Journal of Physics A: Mathematical and General.

[40]  J. Fournier,et al.  Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. , 2008, Physical review letters.

[41]  L. Brown Dimensional regularization of composite operators in scalar field theory , 1980 .

[42]  Netz Colloidal flocculation in near-critical binary mixtures. , 1996, Physical review letters.

[43]  S. Safran,et al.  Interaction between inclusions embedded in membranes. , 1996, Biophysical journal.

[44]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[45]  M. M. Nicolson,et al.  The interaction between floating particles , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Kurt Kremer,et al.  Tunable generic model for fluid bilayer membranes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  M. Bloom,et al.  Mattress model of lipid-protein interactions in membranes. , 1984, Biophysical journal.

[48]  M. Deserno,et al.  Interface-mediated interactions between particles: a geometrical approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[50]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[51]  M. Krech Casimir forces in binary liquid mixtures , 1997, cond-mat/9703093.

[52]  Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. , 2005, The Journal of chemical physics.

[53]  Watt W. Webb,et al.  Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles , 2007, Proceedings of the National Academy of Sciences.

[54]  Frank L. H. Brown,et al.  Implicit solvent simulation models for biomembranes , 2005, European Biophysics Journal.

[55]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[56]  Fachbereich Physik,et al.  Interaction of conical membrane inclusions: Effect of lateral tension , 1998 .

[57]  D. Harries,et al.  Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. , 2000, Biophysical journal.

[58]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[59]  D. Brown,et al.  Structure and Origin of Ordered Lipid Domains in Biological Membranes , 1998, The Journal of Membrane Biology.

[60]  Two direct methods to calculate fluctuation forces between rigid objects embedded in fluid membranes , 2001 .

[61]  M. Goulian,et al.  Energetics of inclusion-induced bilayer deformations. , 1998, Biophysical journal.

[62]  D. Brown,et al.  Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? , 1997, Biochemical and biophysical research communications.

[63]  Deborah A. Brown,et al.  Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts* , 2000, The Journal of Biological Chemistry.

[64]  M. Sperotto,et al.  Theoretical analysis of protein organization in lipid membranes. , 1998, Biochimica et biophysica acta.

[65]  A. Kolb,et al.  Optimized Constant Pressure Stochastic Dynamics , 1999 .

[66]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[67]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[68]  C. Misbah,et al.  Elastic interaction of point defects on biological membranes , 2002, The European physical journal. E, Soft matter.

[69]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[70]  P. Dommersnes,et al.  Comment on "Long-range forces in heterogeneous fluid membranes” , 1997 .

[71]  Fluctuation-induced interactions between rods on membranes and interfaces , 1995, cond-mat/9509071.

[72]  M. S. Turner,et al.  Theoretical model for the formation of caveolae and similar membrane invaginations. , 2003, Biophysical journal.

[73]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[74]  Gregory A Voth,et al.  Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. , 2004, Biophysical journal.

[75]  D. Harries,et al.  Macroion-induced compositional instability of binary fluid membranes. , 2002, Physical review letters.

[76]  A Lamura,et al.  Numerical study of the flow around a cylinder using multi-particle collision dynamics , 2002, The European physical journal. E, Soft matter.

[77]  M. S. Turner,et al.  Inclusions on fluid membranes anchored to elastic media. , 1999, Biophysical journal.

[78]  M S Turner,et al.  Interactions between proteins bound to biomembranes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  M. Krech,et al.  The Casimir Effect in Critical Systems , 1994 .

[80]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[81]  A. Ben-Shaul,et al.  A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. , 1993, Biophysical journal.

[82]  Mark Goulian,et al.  Long-Range Forces in Heterogeneous Fluid Membranes , 1993 .