Photoautotrophic growth and accumulation of macromolecules by Porphyridium cruentum UTEX 161 depending on culture media

[1]  P. Michaud,et al.  In Vitro Antioxidant and Anti-Inflammatory Activities of Bioactive Proteins and Peptides from Rhodomonas sp. , 2023, Applied Sciences.

[2]  J. A. López-Elías,et al.  Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum , 2023, Metabolites.

[3]  Y. Tamai,et al.  Single and combined effects of fertilization, ectomycorrhizal inoculation, and drought on container-grown Japanese larch seedlings , 2022, Journal of Forestry Research.

[4]  Y. Maltsev,et al.  Growth and B-Phycoerythrin Production of Red Microalga Porphyridium purpureum (Porphyridiales, Rhodophyta) under Different Carbon Supply , 2022, Microorganisms.

[5]  P. Michaud,et al.  Microalgae as feedstock for bioactive polysaccharides. , 2022, International journal of biological macromolecules.

[6]  P. Michaud,et al.  Effect of heavy metals mixture on the growth and physiology of Tetraselmis sp.: Applications to lipid production and bioremediation. , 2022, Bioresource technology.

[7]  P. Michaud,et al.  Improvement of Biomass and Phycoerythrin Production by a Strain of Rhodomonas sp. Isolated from the Tunisian Coast of Sidi Mansour , 2022, Biomolecules.

[8]  P. Michaud,et al.  Influence of the sulfate content of the exopolysaccharides from Porphyridium sordidum on their elicitor activities on date palm vitroplants. , 2022, Plant physiology and biochemistry : PPB.

[9]  P. Michaud,et al.  In silico evidence of antiviral activity against SARS-CoV-2 main protease of oligosaccharides from Porphyridium sp. , 2022, Science of The Total Environment.

[10]  C. Laroche,et al.  Exploring the Diversity of Red Microalgae for Exopolysaccharide Production , 2022, Marine drugs.

[11]  M. Coimbra,et al.  Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum , 2021 .

[12]  P. Michaud,et al.  Sulfated exopolysaccharides from Porphyridium cruentum: A useful strategy to extend the shelf life of minced beef meat. , 2021, International journal of biological macromolecules.

[13]  N. Politaeva,et al.  Impact of the nitrate concentration on the biomass growth and the fatty acid profiles of microalgae Chlorella sorokiniana , 2021 .

[14]  P. Michaud,et al.  Optimization of Exopolysaccharides Production by Porphyridium sordidum and Their Potential to Induce Defense Responses in Arabidopsis thaliana against Fusarium oxysporum , 2021, Biomolecules.

[15]  J. Schmid,et al.  Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production , 2020 .

[16]  Christa N. Hestekin,et al.  Porphyridium cruentum Grown in Ultra-Filtered Swine Wastewater and Its Effects on Microalgae Growth Productivity and Fatty Acid Composition , 2020, Energies.

[17]  M. Kornaros,et al.  Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana , 2020 .

[18]  Shaohua Li,et al.  Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. , 2020, Bioresource technology.

[19]  F. Nan,et al.  Effects of Different Environmental Factors on the Growth and Bioactive Substance Accumulation of Porphyridium purpureum , 2020, International journal of environmental research and public health.

[20]  C. Pichon,et al.  Carotenoids Overproduction in Dunaliella Sp.: Transcriptional Changes and New Insights through Lycopene β Cyclase Regulation , 2019, Applied Sciences.

[21]  Hafiz M.N. Iqbal,et al.  Light Intensity and Nitrogen Concentration Impact on the Biomass and Phycoerythrin Production by Porphyridium purpureum , 2019, Marine drugs.

[22]  W. Xiang,et al.  Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations , 2019, Marine drugs.

[23]  P. Michaud,et al.  Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. , 2019, International journal of biological macromolecules.

[24]  C. Laroche,et al.  Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications. , 2018, International journal of biological macromolecules.

[25]  A. Massé,et al.  Concentration and purification of Porphyridium cruentum exopolysaccharides by membrane filtration at various cross-flow velocities , 2018, Process Biochemistry.

[26]  R. Zeng,et al.  Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum , 2018, Applied Microbiology and Biotechnology.

[27]  S. Shanab,et al.  A review on algae and plants as potential source of arachidonic acid , 2018, Journal of advanced research.

[28]  Jiangxin Wang,et al.  Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii , 2018, Biotechnology for Biofuels.

[29]  Sandhya Mishra,et al.  Abiotic stresses as tools for metabolites in microalgae. , 2017, Bioresource technology.

[30]  H. Leung,et al.  Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production , 2017 .

[31]  P. Michaud,et al.  Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. , 2016, Biotechnology advances.

[32]  Xi-Ying Zhang,et al.  Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation. , 2016, Biochimica et biophysica acta.

[33]  I. Setyaningsih,et al.  Harvesting and Separation Technique of Porphyridium cruentum Polysaccharide Using Ultrafiltration Membrane , 2016 .

[34]  P. Michaud,et al.  Improvement of exopolysaccharide production by Porphyridium marinum. , 2016, Bioresource technology.

[35]  M. D. Kavitha,et al.  Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid , 2016, Journal of Food Science and Technology.

[36]  P. Gómez,et al.  Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients , 2016, Journal of Applied Phycology.

[37]  B. Cheirsilp,et al.  Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments , 2016, Aquaculture International.

[38]  J. Hestekin,et al.  Eicosapentaenoic Acid from Porphyridium Cruentum: Increasing Growth and Productivity of Microalgae for Pharmaceutical Products , 2015 .

[39]  Anita F. Silva,et al.  Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae) , 2015 .

[40]  Yuan-guang Li,et al.  Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors. , 2014, Bioresource technology.

[41]  Gholamreza Djelveh,et al.  Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology , 2014 .

[42]  A. Godhe,et al.  Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum , 2014, Central European Journal of Biology.

[43]  L. A. Garcés,et al.  Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii , 2014, Journal of Applied Phycology.

[44]  A. Bafana Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. , 2013, Carbohydrate polymers.

[45]  Xuxiong Huang,et al.  Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis) , 2013, Journal of Applied Phycology.

[46]  Chengwu Zhang,et al.  A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. , 2012, Bioresource technology.

[47]  J. Staden,et al.  Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures , 2012, Journal of Applied Phycology.

[48]  P. Schenk,et al.  High Lipid Induction in Microalgae for Biodiesel Production , 2012 .

[49]  E. Cahoon,et al.  Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. , 2012, Phytochemistry.

[50]  S. Kopriva,et al.  The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants1[W] , 2011, Plant Physiology.

[51]  S. Harrison,et al.  Interference by pigment in the estimation of microalgal biomass concentration by optical density. , 2011, Journal of microbiological methods.

[52]  J. Doucha,et al.  Microalgae—novel highly efficient starch producers , 2011, Biotechnology and bioengineering.

[53]  G. Price,et al.  Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. , 2011, Bioresource technology.

[54]  Y. Li-Beisson,et al.  Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves , 2011, BMC biotechnology.

[55]  Li-Hua Cheng,et al.  Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. , 2010, Bioresource technology.

[56]  S. Sim,et al.  Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. , 2010, Bioresource technology.

[57]  S. Arad,et al.  Red microalgal cell-wall polysaccharides: biotechnological aspects. , 2010, Current opinion in biotechnology.

[58]  S. O. Lourenço,et al.  Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae) , 2009 .

[59]  P. Villeneuve,et al.  In vitro comparisons between Carica papaya and pancreatic lipases during test meal lipolysis: potential use of CPL in enzyme replacement therapy. , 2009 .

[60]  Yanna Liang,et al.  Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions , 2009, Biotechnology Letters.

[61]  A. P. Martins,et al.  Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta) , 2007, Journal of Applied Phycology.

[62]  Niels Thomas Eriksen,et al.  On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor , 2006, Journal of Applied Phycology.

[63]  M. Kawase,et al.  Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi‐continuous Chlamydomonas cultures , 2006, Biotechnology and bioengineering.

[64]  Alan Waggoner,et al.  Fluorescent labels for proteomics and genomics. , 2006, Current opinion in chemical biology.

[65]  Vicki Chen,et al.  Evolution of fouling during crossflow filtration of model EPS solutions , 2005 .

[66]  Sila Bhattacharya,et al.  Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii , 2005 .

[67]  Ricardo Bressan-Smith,et al.  Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves , 2005 .

[68]  Stanley M. Barnett,et al.  Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum , 2004 .

[69]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[70]  E. Trinquet,et al.  Allophycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. , 2001, Analytical biochemistry.

[71]  R. Viola,et al.  The unique features of starch metabolism in red algae , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  Catherine Dupré,et al.  Effect of photon fluence rate, nitrogen limitation and nitrogen recovery on the level of phycoerythrin in the unicellular alga, Rhodosorus marinus (Rhodophyceae) , 1994 .

[73]  H. Fernandes,et al.  Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58 , 1994 .

[74]  W. Rudiger,et al.  Acclimation processes in the light harvesting complex of the red alga Porphyridium purpureum (Bory) Drew et Ross, according to irradiance and nutrient availability , 1993 .

[75]  E. Gantt,et al.  DEVELOPMENT OF PHOTOSYNTHETIC ACTIVITY IN PORPHYRIDIUM PURPUREUM (RHODOPHYTA) FOLLOWING NITROGEN STARVATION 1, 2 , 1990 .

[76]  A. Rotem,et al.  Effect of Nitrogen on Polysaccharide Production in a Porphyridium sp , 1988, Applied and environmental microbiology.

[77]  C. Steinberg,et al.  Planktonic bloom-forming Cyanobacteria and the eutrophication of lakes and rivers , 1988 .

[78]  A. Richmond,et al.  EFFECT OF ENVIRONMENTAL CONDITIONS ON FATTY ACID COMPOSITION OF THE RED ALGA PORPHYRIDIUM CRUENTUM: CORRELATION TO GROWTH RATE 1 , 1988 .

[79]  W. R. Rayburn,et al.  INFLUENCE OF GROWTH STATUS AND NUTRIENTS ON EXTRACELLULAR POLYSACCHARIDE SYNTHESIS BY THE SOIL ALGA CHLAMYDOMONAS MEXICANA (CHLOROPHYCEAE) 1 , 1984 .

[80]  T. A. Kursar,et al.  Photosynthetic Unit Organization in a Red Alga : Relationships between Light-Harvesting Pigments and Reaction Centers. , 1983, Plant physiology.

[81]  J. A. Hellebust,et al.  Floridean starch metabolism of Porphyridium purpureum (Rhodophyta) , 1979 .

[82]  J. Ramus,et al.  THE CORRELATION OF GOLGI ACTIVITY AND POLYSACCHARIDE SECRETION IN PORPHYRIDIUM 1 2 , 1975 .

[83]  J. Ramus THE PRODUCTION OF EXTRACELLULAR POLYSACCHARIDE BY THE UNICELLULAR RED ALGA PORPHYRIDIUM AERUGINEUM 1, 2 , 1972 .

[84]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[85]  P. Michaud,et al.  Flow cytometry assay to evaluate lipid production by the marine microalga Tetraselmis sp. using a two stage process , 2021 .

[86]  R. Lovitt,et al.  Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. , 2016, Bioresource technology.

[87]  C. Fuentes-Grünewald,et al.  Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier Transform Infrared spectroscopy for monitoring biomass composition and metabolites production. , 2015, Bioresource technology.

[88]  Zhenhong Yuan,et al.  Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. , 2014, Bioresource technology.

[89]  R. Rengasamy,et al.  Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. , 2012, Bioresource technology.

[90]  Arief Widjaja,et al.  Study of increasing lipid production from fresh water microalgae Chlorella vulgaris , 2009 .

[91]  J. Grobbelaar,et al.  The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures , 1987 .

[92]  R. Gilles,et al.  Effect of salinity on the free amino acids pool of the red alga Porphyridiumpurpureum (= P. cruentum) , 1977 .

[93]  P. A. Cawse The determination of nitrate in soil solutions by ultraviolet spectrophotometry , 1967 .

[94]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .